
Automated Inference with Adaptive Batches

Soham De

Joint work with Abhay Yadav, David Jacobs, Tom Goldstein

University of Maryland

OVERVIEW
Most machine learning models use SGD for training

BUT…noisy gradients & large variance

 Hard to automate stepsize selection & stopping conditions

OVERVIEW
Most machine learning models use SGD for training

BUT…noisy gradients & large variance

 Hard to automate stepsize selection & stopping conditions

In this work: Big Batch SGD

Adaptively grow batch size based on amount of noise
in the gradients

Easy automated stepsize selection

MOST MODEL FITTING
PROBLEMS LOOK LIKE THIS

min `(x) :=
1

N

NX

i=1

f(x, zi)

MOST MODEL FITTING
PROBLEMS LOOK LIKE THIS

SVM

logistic regression

neural nets
matrix factorization

blah blah blah

We also consider the more general problem:

min `(x) := Ez⇠p[f(x, z)]

min `(x) :=
1

N

NX

i=1

f(x, zi)

Applications

SGD
compute gradientselect data update

xt+1 = xt � ↵tgtgt =
1

N

NX

i=1

rf(xt, zi)

SGD
compute gradientselect data update

xt+1 = xt � ↵tgtgt ⇡ rf(xt, z12)

SGD

far from optimal
solution improves

compute gradientselect data update

xt+1 = xt � ↵tgtgt ⇡ rf(xt, z8)

SGD
compute gradientselect data update

gt ⇡ rf(xt, z8) xt+1 = xt � ↵tgt

SGD
compute gradientselect data update

close to optimal
solution gets worse

gt ⇡ rf(xt, z8) xt+1 = xt � ↵tgt

SGD

Error must decrease
as we approach solution

select data compute gradient update

gt ⇡ rf(xt, z8) xt+1 = xt � ↵tgt

SGD

Error must decrease
as we approach solution

classical solution

shrink stepsize

select data compute gradient update

gt ⇡ rf(xt, z8) xt+1 = xt � ↵tgt

lim
t!1

↵t = 0

SGD

Error must decrease
as we approach solution

classical solution

shrink stepsize hard to pick
stepsize schedule

select data compute gradient update

gt ⇡ rf(xt, z8) xt+1 = xt � ↵tgt

lim
t!1

↵t = 0

USE BIGGER BATCHES?
compute gradientselect data update

gt ⇡ rf(xt, z8) xt+1 = xt � ↵tgt

close to optimal
solution gets worse

USE BIGGER BATCHES?
compute gradientselect data update

xt+1 = xt � ↵tgt

} close to optimal
solution gets worse

USE BIGGER BATCHES?
compute gradientselect data update

xt+1 = xt � ↵tgt
gt ⇡ r`B(xt)

gradient on batch B} close to optimal
solution gets worse

USE BIGGER BATCHES?
compute gradientselect data update

xt+1 = xt � ↵tgt
gt ⇡ r`B(xt)

gradient on batch B} close to optimal
solution gets worse

USE BIGGER BATCHES?
compute gradientselect data update

lower variance
solution gets better

xt+1 = xt � ↵tgt
gt ⇡ r`B(xt)

gradient on batch B}

GROWING BATCHES
regime 1: far from optimal regime 2: close to optimal

GROWING BATCHES
regime 1: far from optimal regime 2: close to optimal

Noisy gradients
improve solution

Large batches do
unnecessary work

+
Get stuck in local minima

GROWING BATCHES
regime 1: far from optimal regime 2: close to optimal

Noisy gradients
improve solution

small batches
work well!

Large batches do
unnecessary work

+
Get stuck in local minima

GROWING BATCHES
regime 1: far from optimal regime 2: close to optimal

Noisy gradients
improve solution

small batches
work well!

Large batches do
unnecessary work

+
Get stuck in local minima

Noisy gradients with high
variance worsen solution

Small batches require
stepsize decay (hard to tune)

GROWING BATCHES
regime 1: far from optimal regime 2: close to optimal

Noisy gradients
improve solution

small batches
work well!

Large batches do
unnecessary work

+
Get stuck in local minima

Noisy gradients with high
variance worsen solution

Small batches require
stepsize decay (hard to tune)

large batches
work well!

GROWING BATCHES
regime 1: far from optimal regime 2: close to optimal

Noisy gradients
improve solution

small batches
work well!

Large batches do
unnecessary work

+
Get stuck in local minima

Noisy gradients with high
variance worsen solution

Small batches require
stepsize decay (hard to tune)

large batches
work well!

Adaptively Grow
Batches Over Time!

PRELIMINARIES

kr`B(x)�r`(x)k2 < kr`B(x)k2.

Standard result in stochastic optimization:

Lemma
A sufficient condition for to be a descent direction is:�r`B(x)

PRELIMINARIES

kr`B(x)�r`(x)k2 < kr`B(x)k2.

Standard result in stochastic optimization:

Lemma
A sufficient condition for to be a descent direction is:�r`B(x)

error approximate
gradient

PRELIMINARIES

kr`B(x)�r`(x)k2 < kr`B(x)k2.

Standard result in stochastic optimization:

Lemma
A sufficient condition for to be a descent direction is:�r`B(x)

If error is small relative to gradient : descent direction

error approximate
gradient

PRELIMINARIES

kr`B(x)�r`(x)k2 < kr`B(x)k2.

Standard result in stochastic optimization:

Lemma
A sufficient condition for to be a descent direction is:�r`B(x)

error approximate
gradient

How big is this error?

How large does the batch need to be to guarantee this?

ERROR BOUND
Theorem
Assume f has Lz - Lipschitz dependence on data z.
Then, expected error is uniformly bounded by:

EBkr`B(x)�r`(x)k2 = TrVarB(r`B(x))

 1

|B| · 4L2
z TrVarz(z)

ERROR BOUND
Theorem
Assume f has Lz - Lipschitz dependence on data z.
Then, expected error is uniformly bounded by:

EBkr`B(x)�r`(x)k2 = TrVarB(r`B(x))

expected error batch gradient variance

 1

|B| · 4L2
z TrVarz(z)

ERROR BOUND
Theorem
Assume f has Lz - Lipschitz dependence on data z.
Then, expected error is uniformly bounded by:

EBkr`B(x)�r`(x)k2 = TrVarB(r`B(x))

expected error batch gradient variance

 1

|B| · 4L2
z TrVarz(z)

data variance
batch size

ERROR BOUND
Theorem
Assume f has Lz - Lipschitz dependence on data z.
Then, expected error is uniformly bounded by:

EBkr`B(x)�r`(x)k2 = TrVarB(r`B(x))

expected error batch gradient variance

 1

|B| · 4L2
z TrVarz(z)

data variance
batch size

 Expected Error
(Gradient Variance)

< Data Variance

Higher Batch Size Lower Gradient Variance

ERROR BOUND

From the previous Lemma and Theorem:
We expect to be a descent direction reasonably
often provided:

�r`B(x)

✓

2Ekr`Bt(xt)k2 � 1

|Bt|
TrVarzrf(xt, z)

where ✓ 2 (0, 1)

ERROR BOUND

From the previous Lemma and Theorem:
We expect to be a descent direction reasonably
often provided:

�r`B(x)

✓

2Ekr`Bt(xt)k2 � 1

|Bt|
TrVarzrf(xt, z)

where ✓ 2 (0, 1)

We use this observation in Big Batch SGD

BIG BATCH SGD

} pick batch B

BIG BATCH SGD

estimate size of error using
variance of batch gradients

} pick batch B

BIG BATCH SGD

if signal > noise
 (gradient) (variance)

}

update

pick batch B

BIG BATCH SGD

if signal > noise
 (gradient) (variance)

}

update

pick batch B

BIG BATCH SGD

}

if signal > noise
 (gradient) (variance)

update
pick batch B

BIG BATCH SGD

}

if signal > noise
 (gradient) (variance)

update
pick batch B

BIG BATCH SGD

}

if signal > noise
 (gradient) (variance)

update
pick batch B

BIG BATCH SGD

}

if signal > noise
 (gradient) (variance)

update

pick batch B

BIG BATCH SGD

}

if signal > noise
 (gradient) (variance)

update

pick batch B

BIG BATCH SGD

}

otherwise
increase batch size

if signal > noise
 (gradient) (variance)

update

pick batch B

BIG BATCH SGD

}
otherwise

increase batch size

if signal > noise
 (gradient) (variance)

update

pick batch B

BIG BATCH SGD

}
otherwise

increase batch size

if signal > noise
 (gradient) (variance)

update

pick batch B

BIG BATCH SGD

}
otherwise

increase batch size

if signal > noise
 (gradient) (variance)

update

pick batch B

BIG BATCH SGD

}
otherwise

increase batch size

if signal > noise
 (gradient) (variance)

update

pick batch B

BIG BATCH SGD
On each iteration t

BIG BATCH SGD
On each iteration t

• Estimate size of gradient error by computing variance

BIG BATCH SGD
On each iteration t

• Pick batch B large enough such that

✓

2Ekr`Bt(xt)k2 � 1

|Bt|
TrVarzrf(xt, z)

where ✓ 2 (0, 1)

• Estimate size of gradient error by computing variance

BIG BATCH SGD
On each iteration t

• Pick batch B large enough such that

✓

2Ekr`Bt(xt)k2 � 1

|Bt|
TrVarzrf(xt, z)

• Choose stepsize ↵t

where ✓ 2 (0, 1)

• Estimate size of gradient error by computing variance

BIG BATCH SGD
On each iteration t

• Pick batch B large enough such that

✓

2Ekr`Bt(xt)k2 � 1

|Bt|
TrVarzrf(xt, z)

• Choose stepsize ↵t

• Update
xt+1 = xt � ↵tr`Bt(xt)

where ✓ 2 (0, 1)

• Estimate size of gradient error by computing variance

BIG BATCH SGD
On each iteration t

• Pick batch B large enough such that

✓

2Ekr`Bt(xt)k2 � 1

|Bt|
TrVarzrf(xt, z)

• Choose stepsize ↵t

• Update
xt+1 = xt � ↵tr`Bt(xt)

where ✓ 2 (0, 1)
extra step to SGD

• Estimate size of gradient error by computing variance

BIG BATCH SGD
On each iteration t

• Pick batch B large enough such that

✓

2Ekr`Bt(xt)k2 � 1

|Bt|
TrVarzrf(xt, z)

• Choose stepsize ↵t

• Update
xt+1 = xt � ↵tr`Bt(xt)

where ✓ 2 (0, 1)

Can be estimated
using the batch B

• Estimate size of gradient error by computing variance

CONVERGENCE
Assumption: has L-Lipschitz gradients`

`(x)  `(y) +r`(y)T (x� y) +
L

2
kx� yk2

Assumption: satisfies the Polyak-Lojasiewicz (PL) Inequality`

kr`(x)k2 � 2µ(`(x)� `(x?))

CONVERGENCE
Assumption: has L-Lipschitz gradients`

`(x)  `(y) +r`(y)T (x� y) +
L

2
kx� yk2

Assumption: satisfies the Polyak-Lojasiewicz (PL) Inequality`

kr`(x)k2 � 2µ(`(x)� `(x?))

Theorem
Big Batch SGD converges linearly:

↵ =
1

�L
� =

✓2 + (1� ✓)2

(1� ✓)2

E[`(xt+1)� `(x?)] 
�
1� µ

�L

�
· E[`(xt)� `(x?)]

with optimal step size where

CONVERGENCE RESULTS
Theorem
Big Batch SGD converges linearly:

↵ =
1

�L
� =

✓2 + (1� ✓)2

(1� ✓)2

E[`(xt+1)� `(x?)] 
�
1� µ

�L

�
· E[`(xt)� `(x?)]

with optimal step size where

Per-iteration convergence rate

CONVERGENCE RESULTS
Theorem
Big Batch SGD converges linearly:

↵ =
1

�L
� =

✓2 + (1� ✓)2

(1� ✓)2

E[`(xt+1)� `(x?)] 
�
1� µ

�L

�
· E[`(xt)� `(x?)]

with optimal step size where

Per-iteration convergence rate

We show: Error < ✏|B| > O(1/✏)

optimal convergence in the infinite data case

ADVANTAGES

ADVANTAGES

• Controlling noise enables automated stepsize selection

ADVANTAGES

• Controlling noise enables automated stepsize selection
• Backtracking line search works well!

ADVANTAGES

• Controlling noise enables automated stepsize selection
• Backtracking line search works well!
• Stepsize schemes using curvature estimates also work! 

ADVANTAGES

• Controlling noise enables automated stepsize selection
• Backtracking line search works well!
• Stepsize schemes using curvature estimates also work! 

• More accurate gradients enable automatic stopping
conditions  

ADVANTAGES

• Controlling noise enables automated stepsize selection
• Backtracking line search works well!
• Stepsize schemes using curvature estimates also work! 

• More accurate gradients enable automatic stopping
conditions  

• Bigger batches are better in parallel/distributed settings

BACKTRACKING LINE SEARCH

Measures sufficient decrease condition of objective function

For regular (deterministic) gradient descent:

`(xt+1)  `(xt) � c↵tkr`(xt)k2

Also referred to as Armijo Line Search

BACKTRACKING LINE SEARCH

Measures sufficient decrease condition of objective function

For regular (deterministic) gradient descent:

`(xt+1)  `(xt) � c↵tkr`(xt)k2

new objective current
objective

sufficient decrease

Also referred to as Armijo Line Search

BACKTRACKING LINE SEARCH

Measures sufficient decrease condition of objective function

For regular (deterministic) gradient descent:

`(xt+1)  `(xt) � c↵tkr`(xt)k2

new objective current
objective

sufficient decrease

If this fails, decrease stepsize and check again

Also referred to as Armijo Line Search

BACKTRACKING WITH SGD
Measures sufficient decrease condition on individual functions

BACKTRACKING WITH SGD

Moves to the optimum of individual functions, not the global average

Measures sufficient decrease condition on individual functions

BACKTRACKING WITH SGD

Moves to the optimum of individual functions, not the global average

Measures sufficient decrease condition on individual functions

Big Batch SGD gets better estimate of the
approximate decrease of original objective

BACKTRACKING WORKS
WITH BIG BATCH SGD

`B(xt+1)  `B(xt)� c↵tkr`B(xt)k2
Decrease stepsize until:

Measures a condition of sufficient decrease using batch B

BACKTRACKING WORKS
WITH BIG BATCH SGD

`B(xt+1)  `B(xt)� c↵tkr`B(xt)k2
Decrease stepsize until:

Measures a condition of sufficient decrease using batch B

Theorem
Big Batch SGD with backtracking line search converges linearly:

with initial step size set large enough s.t.

E[`(xt+1)� `(x?)] 
⇣
1� cµ

�L

⌘
E[`(xt)� `(x?)]

↵0 � 1

2�L

BACKTRACKING WORKS
WITH BIG BATCH SGD

`B(xt+1)  `B(xt)� c↵tkr`B(xt)k2
Decrease stepsize until:

Measures a condition of sufficient decrease using batch B

Theorem
Big Batch SGD with backtracking line search converges linearly:

with initial step size set large enough s.t.

E[`(xt+1)� `(x?)] 
⇣
1� cµ

�L

⌘
E[`(xt)� `(x?)]

↵0 � 1

2�L

We also derive optimal stepsizes for Big Batch SGD using
Barzilai-Borwein (BB) curvature estimates, with provable guarantees.

Check paper for details.

CONVEX EXPERIMENTS
Model: Ridge Regression & Logistic Regression

BBS: Big Batch SGD
Proposed methods: Blue (Fixed stepsize), Red (Backtracking),
Green (Optimal stepsizes using curvature estimates) curves

CONVEX EXPERIMENTS
Model: Ridge Regression & Logistic Regression

BBS: Big Batch SGD
Proposed methods: Blue (Fixed stepsize), Red (Backtracking),
Green (Optimal stepsizes using curvature estimates) curves

Big Batch SGD (BBS)
with Fixed Step Size

CONVEX EXPERIMENTS
Model: Ridge Regression & Logistic Regression

BBS: Big Batch SGD
Proposed methods: Blue (Fixed stepsize), Red (Backtracking),
Green (Optimal stepsizes using curvature estimates) curves

BBS with Backtracking
(Armijo) Line Search

CONVEX EXPERIMENTS
Model: Ridge Regression & Logistic Regression

BBS: Big Batch SGD
Proposed methods: Blue (Fixed stepsize), Red (Backtracking),
Green (Optimal stepsizes using curvature estimates) curves

BBS with Stepsizes
using BB curvatures

CONVEX EXPERIMENTS
Model: Ridge Regression & Logistic Regression

BBS: Big Batch SGD
Proposed methods: Blue (Fixed stepsize), Red (Backtracking),
Green (Optimal stepsizes using curvature estimates) curves

CONVEX EXPERIMENTS
Batch Size Increase

BBS: Big Batch SGD
Proposed methods: Blue (Fixed stepsize), Red (Backtracking),
Green (Optimal stepsizes using curvature estamates) curves

CONVEX EXPERIMENTS
Stepsizes Used

BBS: Big Batch SGD
Proposed methods: Blue (Fixed stepsize), Red (Backtracking),
Green (Optimal stepsizes using curvature estamates) curves

4-LAYER CNN

0 10 20 30 40

Number of epochs

50

55

60

65

70

75

80

A
cc
u
ra
cy

Mean class accuracy (test set)

0 10 20 30 40

Number of epochs

83

84

85

86

87

88

89

90

A
cc
u
ra
cy

Mean class accuracy (test set)

CIFAR-10 (left) & SVHN (right)

Automated Inference with Adaptive Batches

0 10 20 30 40
Number of epochs

50

60

70

80

90

100

A
cc
u
ra
cy

Mean class accuracy (train set)

Adadelta
BB+Adadelta
SGD+Mom (Fine Tuned)
SGD+Mom (Fixed LR)
BBS+Mom (Fixed LR)
BBS+Mom+Armijo

0 10 20 30 40
Number of epochs

86

88

90

92

94

96

98

100

A
cc
u
ra
cy

Mean class accuracy (train set)

Adadelta
BB+Adadelta
SGD+Mom (Fine Tuned)
SGD+Mom (Fixed LR)
BBS+Mom (Fixed LR)
BBS+Mom+Armijo

0 10 20 30 40
Number of epochs

98.4

98.6

98.8

99

99.2

99.4

99.6

99.8

100

A
cc
u
ra
cy

Mean class accuracy (train set)

Adadelta
BB+Adadelta
SGD+Mom (Fine Tuned)
SGD+Mom (Fixed LR)
BBS+Mom (Fixed LR)
BBS+Mom+Armijo

0 10 20 30 40

Number of epochs

50

55

60

65

70

75

80

A
cc
u
ra
cy

Mean class accuracy (test set)

0 10 20 30 40

Number of epochs

83

84

85

86

87

88

89

90

A
cc
u
ra
cy

Mean class accuracy (test set)

0 10 20 30 40

Number of epochs

98

98.5

99

A
cc
u
ra
cy

Mean class accuracy (test set)

Figure 2: Neural Network Experiments. The three columns from left to right correspond to results for CIFAR-10, SVHN,
and MNIST, respectively. The top row presents classification accuracies on the training set, while the bottom row presents
classification accuracies on the test set.

1998) (ConvNet) to classify three benchmark image
datasets: CIFAR-10 (Krizhevsky and Hinton, 2009),
SVHN (Netzer et al., 2011), and MNIST (LeCun et al.,
1998). Our ConvNet is composed of 4 layers, excluding
the input layer, with over 4.3 million weights. To com-
pare against fine-tuned SGD, we used a comprehensive
grid search on the stepsize schedule to identify the op-
timal schedule. Fixed stepsize methods use the default
decay rule of the Torch library: ↵

t

= ↵0/(1 + 10�7t),
where ↵0 was chosen to be the stepsize used in the fine
tuned experiments. We also tune the hyper-parameter
⇢ in the Adadelta algorithm. Details of the ConvNet
and exact hyper-parameters used for training are pre-
sented in the supplemental.

We plot the accuracy on the train and test set vs the
number of epochs (full passes through the dataset) in
Figure 2. We notice that the big batch SGD with back-
tracking performs better than both Adadelta and SGD
(Fixed LR) in terms of both train and test error. Big
batch SGD even performs comparably to fine tuned
SGD but without the trouble of fine tuning. This is in-
teresting because most state-of-the-art deep networks
(like AlexNet (Krizhevsky et al., 2012), VGG Net (Si-
monyan and Zisserman, 2014), ResNets (He et al.,
2016)) were trained by their creators using standard
SGD with momentum, and training parameters were
tuned over long periods of time (sometimes months).
Finally, we note that the big batch AdaDelta performs
consistently better than plain AdaDelta on both large
scale problems (SVHN and CIFAR-10), and perfor-
mance is nearly identical on the small-scale MNIST
problem.

7 Conclusion

We analyzed and studied the behavior of alternative
SGD methods in which the batch size increases over
time. Unlike classical SGD methods, in which stochas-
tic gradients quickly become swamped with noise,
these “big batch” methods maintain a nearly constant
signal to noise ratio of the approximate gradient. As a
result, big batch methods are able to adaptively adjust
batch sizes without user oversight. The proposed au-
tomated methods are shown to be empirically compa-
rable or better performing than other standard meth-
ods, but without requiring an expert user to choose
learning rates and decay parameters.

Acknowledgements

This work was supported by the US O�ce of Naval Re-
search (N00014-17-1-2078), and the National Science
Foundation (CCF-1535902 and IIS-1526234). A. Ya-
dav and D. Jacobs were supported by the O�ce of the
Director of National Intelligence (ODNI), Intelligence
Advanced Research Projects Activity (IARPA), via
IARPA R&D Contract No. 2014-14071600012. The
views and conclusions contained herein are those of
the authors and should not be interpreted as necessar-
ily representing the o�cial policies or endorsements,
either expressed or implied, of the ODNI, IARPA, or
the U.S. Government. The U.S. Government is autho-
rized to reproduce and distribute reprints for Govern-
mental purposes notwithstanding any copyright anno-
tation thereon.

Proposed Methods

Big Batch SGD can
also be used with
AdaGrad, AdaDelta…

TAKEAWAYS

Adaptively grows batch size over time to maintain a
nearly constant signal-to-noise ratio in the gradients

Better control of the noise makes it easy to automate

Adaptive stepsize methods work well with this method

Better for parallel/distributed settings

We introduce: Big Batch SGD

THANKS!
Feel free to get in touch!

Extended version on arXiv:
“Big Batch SGD: Automated Inference using Adaptive Batch Sizes”
https://arxiv.org/abs/1610.05792

email: sohamde@cs.umd.edu
website: https://cs.umd.edu/~sohamde/

Soham De Tom GoldsteinDavid JacobsAbhay Yadav

https://arxiv.org/abs/1610.05792
mailto:sohamde@cs.umd.edu
https://cs.umd.edu/~sohamde/

