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OVERVIEW
Most machine learning models use SGD for training

BUT…noisy gradients & large variance

   Hard to automate stepsize selection & stopping conditions

In this work:   Big Batch SGD

Adaptively grow batch size based on amount of noise 
in the gradients

Easy automated stepsize selection
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MOST MODEL FITTING 
PROBLEMS LOOK LIKE THIS

SVM

logistic regression

neural nets
matrix factorization

blah blah blah

We also consider the more general problem:

min `(x) := Ez⇠p[f(x, z)]

min `(x) :=
1

N

NX

i=1

f(x, zi)

Applications
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SGD

Error must decrease 
as we approach solution

classical solution

shrink stepsize hard to pick 
stepsize schedule

select data compute gradient update

gt ⇡ rf(xt, z8) xt+1 = xt � ↵tgt

lim
t!1

↵t = 0
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USE BIGGER BATCHES?
compute gradientselect data update

lower variance 
solution gets better

xt+1 = xt � ↵tgt
gt ⇡ r`B(xt)

gradient on batch B}
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GROWING BATCHES
regime 1: far from optimal regime 2: close to optimal

Noisy gradients 
improve solution

small batches 
work well!

Large batches do 
unnecessary work

+
Get stuck in local minima

Noisy gradients with high 
variance worsen solution

Small batches require 
stepsize decay (hard to tune)

large batches 
work well!

Adaptively Grow 
Batches Over Time!



PRELIMINARIES

kr`B(x)�r`(x)k2 < kr`B(x)k2.

Standard result in stochastic optimization:

Lemma 
A sufficient condition for                  to be a descent direction is:�r`B(x)



PRELIMINARIES

kr`B(x)�r`(x)k2 < kr`B(x)k2.

Standard result in stochastic optimization:

Lemma 
A sufficient condition for                  to be a descent direction is:�r`B(x)

error approximate 
gradient



PRELIMINARIES

kr`B(x)�r`(x)k2 < kr`B(x)k2.

Standard result in stochastic optimization:

Lemma 
A sufficient condition for                  to be a descent direction is:�r`B(x)

If error is small relative to gradient : descent direction

error approximate 
gradient



PRELIMINARIES

kr`B(x)�r`(x)k2 < kr`B(x)k2.

Standard result in stochastic optimization:

Lemma 
A sufficient condition for                  to be a descent direction is:�r`B(x)

error approximate 
gradient

How big is this error?

How large does the batch need to be to guarantee this?
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ERROR BOUND
Theorem 
Assume f has Lz - Lipschitz dependence on data z.
Then, expected error is uniformly bounded by:

EBkr`B(x)�r`(x)k2 = TrVarB(r`B(x))

expected error batch gradient variance 

 1

|B| · 4L2
z TrVarz(z)

data variance
batch size

   Expected Error
(Gradient Variance)

<      Data Variance

Higher Batch Size     Lower Gradient Variance
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ERROR BOUND

From the previous Lemma and Theorem:
We expect                   to be a descent direction reasonably 
often provided:

�r`B(x)

✓

2Ekr`Bt(xt)k2 � 1

|Bt|
TrVarzrf(xt, z)

where ✓ 2 (0, 1)

We use this observation in Big Batch SGD



BIG BATCH SGD

} pick batch B



BIG BATCH SGD

estimate size of error using 
variance of batch gradients

} pick batch B



BIG BATCH SGD

if   signal     >    noise
 (gradient)     (variance)

}

update

pick batch B



BIG BATCH SGD

if   signal     >    noise
 (gradient)     (variance)

}

update

pick batch B



BIG BATCH SGD

}

if   signal     >    noise
 (gradient)     (variance)

update
pick batch B



BIG BATCH SGD

}

if   signal     >    noise
 (gradient)     (variance)

update
pick batch B



BIG BATCH SGD

}

if   signal     >    noise
 (gradient)     (variance)

update
pick batch B



BIG BATCH SGD

}

if   signal     >    noise
 (gradient)     (variance)

update

pick batch B



BIG BATCH SGD

}

if   signal     >    noise
 (gradient)     (variance)

update

pick batch B



BIG BATCH SGD

}

otherwise
increase batch size

if   signal     >    noise
 (gradient)     (variance)

update

pick batch B



BIG BATCH SGD

}
otherwise

increase batch size

if   signal     >    noise
 (gradient)     (variance)

update

pick batch B



BIG BATCH SGD

}
otherwise

increase batch size

if   signal     >    noise
 (gradient)     (variance)

update

pick batch B



BIG BATCH SGD

}
otherwise

increase batch size

if   signal     >    noise
 (gradient)     (variance)

update

pick batch B



BIG BATCH SGD

}
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update
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• Choose stepsize      ↵t

• Update
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BIG BATCH SGD
On each iteration t

• Pick batch B large enough such that

✓

2Ekr`Bt(xt)k2 � 1

|Bt|
TrVarzrf(xt, z)

• Choose stepsize      ↵t

• Update
xt+1 = xt � ↵tr`Bt(xt)

where ✓ 2 (0, 1)

Can be estimated 
using the batch B 

• Estimate size of gradient error by computing variance
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`(x)  `(y) +r`(y)T (x� y) +
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CONVERGENCE RESULTS
Theorem 
Big Batch SGD converges linearly:

↵ =
1

�L
� =

✓2 + (1� ✓)2

(1� ✓)2

E[`(xt+1)� `(x?)] 
�
1� µ

�L

�
· E[`(xt)� `(x?)]

with optimal step size                where  

Per-iteration convergence rate

We show: Error < ✏|B| > O(1/✏)

optimal convergence in the infinite data case
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ADVANTAGES

• Controlling noise enables automated stepsize selection
• Backtracking line search works well!
• Stepsize schemes using curvature estimates also work! 

• More accurate gradients enable automatic stopping 
conditions  

• Bigger batches are better in parallel/distributed settings
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BACKTRACKING LINE SEARCH

Measures sufficient decrease condition of objective function

For regular (deterministic) gradient descent:

`(xt+1)  `(xt) � c↵tkr`(xt)k2

new objective current 
objective

sufficient decrease

If this fails, decrease stepsize and check again

Also referred to as Armijo Line Search
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BACKTRACKING WITH SGD

Moves to the optimum of individual functions, not the global average

Measures sufficient decrease condition on individual functions

Big Batch SGD gets better estimate of the 
approximate decrease of original objective



BACKTRACKING WORKS 
WITH BIG BATCH SGD

`B(xt+1)  `B(xt)� c↵tkr`B(xt)k2
Decrease stepsize until:

Measures a condition of sufficient decrease using batch B



BACKTRACKING WORKS 
WITH BIG BATCH SGD
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BACKTRACKING WORKS 
WITH BIG BATCH SGD

`B(xt+1)  `B(xt)� c↵tkr`B(xt)k2
Decrease stepsize until:

Measures a condition of sufficient decrease using batch B

Theorem 
Big Batch SGD with backtracking line search converges linearly:

with initial step size set large enough s.t.                  

E[`(xt+1)� `(x?)] 
⇣
1� cµ

�L

⌘
E[`(xt)� `(x?)]

↵0 � 1

2�L

We also derive optimal stepsizes for Big Batch SGD using 
Barzilai-Borwein (BB) curvature estimates, with provable guarantees. 

Check paper for details.
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CONVEX EXPERIMENTS
Stepsizes Used

BBS: Big Batch SGD
Proposed methods: Blue (Fixed stepsize), Red (Backtracking), 
Green (Optimal stepsizes using curvature estamates) curves
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Figure 2: Neural Network Experiments. The three columns from left to right correspond to results for CIFAR-10, SVHN,
and MNIST, respectively. The top row presents classification accuracies on the training set, while the bottom row presents
classification accuracies on the test set.

1998) (ConvNet) to classify three benchmark image
datasets: CIFAR-10 (Krizhevsky and Hinton, 2009),
SVHN (Netzer et al., 2011), and MNIST (LeCun et al.,
1998). Our ConvNet is composed of 4 layers, excluding
the input layer, with over 4.3 million weights. To com-
pare against fine-tuned SGD, we used a comprehensive
grid search on the stepsize schedule to identify the op-
timal schedule. Fixed stepsize methods use the default
decay rule of the Torch library: ↵

t

= ↵0/(1 + 10�7t),
where ↵0 was chosen to be the stepsize used in the fine
tuned experiments. We also tune the hyper-parameter
⇢ in the Adadelta algorithm. Details of the ConvNet
and exact hyper-parameters used for training are pre-
sented in the supplemental.

We plot the accuracy on the train and test set vs the
number of epochs (full passes through the dataset) in
Figure 2. We notice that the big batch SGD with back-
tracking performs better than both Adadelta and SGD
(Fixed LR) in terms of both train and test error. Big
batch SGD even performs comparably to fine tuned
SGD but without the trouble of fine tuning. This is in-
teresting because most state-of-the-art deep networks
(like AlexNet (Krizhevsky et al., 2012), VGG Net (Si-
monyan and Zisserman, 2014), ResNets (He et al.,
2016)) were trained by their creators using standard
SGD with momentum, and training parameters were
tuned over long periods of time (sometimes months).
Finally, we note that the big batch AdaDelta performs
consistently better than plain AdaDelta on both large
scale problems (SVHN and CIFAR-10), and perfor-
mance is nearly identical on the small-scale MNIST
problem.

7 Conclusion

We analyzed and studied the behavior of alternative
SGD methods in which the batch size increases over
time. Unlike classical SGD methods, in which stochas-
tic gradients quickly become swamped with noise,
these “big batch” methods maintain a nearly constant
signal to noise ratio of the approximate gradient. As a
result, big batch methods are able to adaptively adjust
batch sizes without user oversight. The proposed au-
tomated methods are shown to be empirically compa-
rable or better performing than other standard meth-
ods, but without requiring an expert user to choose
learning rates and decay parameters.
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Proposed Methods

Big Batch SGD can
also be used with 
AdaGrad, AdaDelta…



TAKEAWAYS

Adaptively grows batch size over time to maintain a 
nearly constant signal-to-noise ratio in the gradients

Better control of the noise makes it easy to automate 

Adaptive stepsize methods work well with this method 

Better for parallel/distributed settings

We introduce: Big Batch SGD
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Extended version on arXiv: 
“Big Batch SGD: Automated Inference using Adaptive Batch Sizes”
https://arxiv.org/abs/1610.05792

email: sohamde@cs.umd.edu 
website: https://cs.umd.edu/~sohamde/
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