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Models trained with current ML
pipelines can leak training data!
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Figure 1: Our extraction attack. Given query access to a
neural network language model, we extract an individual per-
son’s name, email address, phone number, fax number, and
physical address. The example in this figure shows informa-
tion that is all accurate so we redact it to protect privacy.

Carlini, Nicholas, et al. "Extracting training data from large language models.” 30th USENIX
Security Symposium (USENIX Security 21). 2021.
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Models trained with current ML
pipelines can leak training data!
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Fig. 1: Examples of training data points reconstructed from a
55K parameter CNN classifier trained on CIFAR-10.
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Summary of Results

100

Goal SOTA on CIFAR-10 Over Time +33.2%
80
Train models with 80 mmm SOTA Private (eps=8) <
. i i _ . Ours Private (eps=38) E,
Differential Privacy (DP)to & __ g
high accuracy — unlock ML~ & .
.. 5 n
on sensitive data g 70 I I g
20
65
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Results (2020) (2021)  (2022)
Publications Over Time (Date) = SOTA No.n—Private
SOTA on CIFAR10 and wm= SOTA Private (¢ =8)

. QOurs Private (e=8)

ImageNet by large margins Largest improvement to

date on CIFAR-10 .
Practically useful levels of

performance on ImageNet
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Talk outline
e What is Differential Privacy (DP)?
e Differentially Private Stochastic Gradient Descent (DP-SGD)
e Improving convergence and trainability of deep networks
e Leveraging pre-training

e Interplay between noise, batch size and compute budget
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What is differential privacy?
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Differential privacy is a methodology
to provide individual privacy during

the analysis of datasets.

o



What is differential privacy?

Y
N

Data Set

[

e-DP Algorithm
(randomized)

} Distribution over

With
Soham’s data

N

Y
]

Data Set

models: P

[

e-DP Algorithm
(randomized)

} Distribution over

Without
Soham’s data

N

models: O

Differential privacy is a methodology
to provide individual privacy during
the analysis of datasets.

DP provides a formal privacy guarantee (defined by &) against data leakage
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Formal definition:

Definition (Differential Privacy). Let A : X — Y be a randomized
algorithm, and let € > 0, 6§ € [0, 1]. We say that A is (¢, §)-DP if for any
two datasets D, D’ € X differing by a single element, we have that

VY c VY, P[A(D) eY] < exp(e)P[A(D") € Y] +6.

Dwork, Cynthia, and Aaron Roth. "The algorithmic foundations of differential privacy." b’
Found. Trends Theor. Comput. Sci. 9.3-4 (2014): 211-407.



Formal definition

Definition (Differential Privacy). Let A : X — Y be a randomized

algorithm, and let £ > 0, 6 € [0, 1]. We say that A is

two datasets D, D’ € X differing by a single element

(g,8)-DP

if for any

we have that

VY c VY, P[A(D) eY] < exp(e)P[A(D") € Y] +6.

this implies : KL(A(D)|A(D')) = O(€?)

Dwork, Cynthia, and Aaron Roth. "The algorithmic foundations of differential privacy." b’
Found. Trends Theor. Comput. Sci. 9.3-4 (2014): 211-407.



An example: Private Averaging

Private

. Average
averaging

+ Noise
(8,6)_DP
d-dimensional vectors X=%X+7Z
of maximum norm C
02
Z~N (0, —2021) — o depends on privacy guarantee (g, &)
n

S

Privacy-utility trade-off: El||Z — Z||] ~ -
€
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Why DP is desirable for deploying _—
models on sensitive data

—— Census Bureau Sets Key
Parameters to Protect Privacy
in 2020 Census Results

Meta Research

e Robust to powerful adversaries:

12 FEBRUARY 2020 B2 Microsoft =4

O Adversa r|es W|th unbou nded New privacy-protected Facebook data for independent

research on social media’s impact on democracy

computation & arbitrary side-knowledge

Putting differential privacy into practice to use data
responsibly

October 28, 2020 | Sarah Bird

i Google Al Blog

The latest from Google Research

e Does not rely on obscurity

" Machine Learning Research

@] Algonthms can be pUbI|C New Insights into Human Mobility with Privacy
Preserving Aggregation
Tuesday, November 12,2019

Article | December 2017

o Quantiﬁable Privacy
Learning with Privacy at Scale

O

O  with privacy budget ¢



Calibrating the Privacy Budget

The choice of ¢ is a policy question that should be informed by:

e Normative privacy requirements of each application

e Utility/accuracy requirements

~
&
Go gIe M United States
COVID-19 m o Census
More | | | | Less
privacy & I I I I | > privacy
1 26 4 4.7 8 9 19
\ J

Y
e range considered in our project
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Talk outline
e What is Differential Privacy (DP)?
e Differentially Private Stochastic Gradient Descent (DP-SGD)
e Improving convergence and trainability of deep networks
e Leveraging pre-training

e Interplay between noise, batch size and compute budget
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Private ML: Differentially Private SGD (DP-SGD)

Privatized Average Gradient

L R B

e Setting: a trusted party trains the ML model on a private dataset

e Updates only use privatized gradients — model can be released at any point

O

Abadi, Martin, et al. "Deep learning with differential privacy." Proceedings of the 2016 ACM
SIGSAC conference on computer and communications security. 2016.



Private ML: Differentially Private SGD (DP-SGD)

1 oC
w0 = g8 _ g (I |ZC11pC(Vl (w<f>))+H )

. /

Clip gradient per sample to norm C Add Gaussian noise
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Private ML: Differentially Private SGD (DP-SGD)

1 oC
1 :
wD = _p, = E ' CllpC(Vli(w(t))) + —

|B| - |B|
1€B/
Clip gradient per sample to norm C Add Gaussian noise

The total privacy loss € of the training procedure:
e Increases with number of iterations
e Decreases with added noise

e Increases with batch size
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Challenges of DP-SGD

%

Bounded privacy budget €

— tradeoff between 1) # iterations & 2) amount of noise

— different hyper-parameter & regularization settings

O
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Challenges of DP-SGD

= Bounded privacy budget €

— tradeoff between 1) # iterations &
— different hyper-parameter & regularization settings

=  Clipping per sample + Noise

— Privatized gradient is biased and has high variance

=  Making standard models work
— L2 norm of noise scales with model dimension

— Cannot use batch normalization

O



Prior Work: DP Training in Computer Vision

100
Large accuracy drop for DP training

80
Community focus on: 60
e Specialized architectures a0
e Reduction of model dimensionality
20
e Modifications to DP-SGD
0

CIFAR-10 from scratch ImageNet fine-tuning

Top-1 Accuracy (%)

B SOTA Private
. SOTA Non-Private

Tramer, Florian, and Dan Boneh. "Differentially Private Learning Needs Better Features (or Much More Data)." ICLR, 2020.
Yu, Da, et al. "Large Scale Private Learning via Low-rank Reparametrization.”" ICML 2021.
Papernot, Nicolas, et al. "Tempered Sigmoid Activations for Deep Learning with Differential Privacy.” AAAI, 2021.

Kurakin, Alexey, et al.. "Toward Training at ImageNet Scale with Differential Privacy." arXiv, 2022. iﬁ



Our approach

= Standard deep learning architectures

%

%

(unlike community)

Push the limits of vanilla DP-SGD
(using enough compute & careful hyperparam tuning)

Improve trainability & convergence of DP-SGD
(using tricks from non-private training)

Getting all the details right was crucial for good performance

O



Talk outline
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Improving convergence & trainability

Accuracy (%)

CIFAR-10 classification under (8, 107%)-DP

Validation Training

Baseline (WRN-40-4 w/o batch normalization)

50.8 (0.7) 51.2 (0.7)

Standard deep networks for vision rely on
batch normalization for good performance

!

Conv

RelLU

BN

O



Improving convergence & trainability

Accuracy (%)

CIFAR-10 classification under (8, 107%)-DP

Validation Training
Baseline (WRN-40-4 w/o batch normalization) 50.8 (0.7) 51.2 (0.7)
+ Group normalization (16 groups) 66.3 (0.6) 679 (0.3)

ég crucial to place it on

Conv the residual branch
Replacing with alternate normalizers or |
normalizer-free methods can recover Rel"u
the benefits of batch normalization a |

O

De & Smith. "Batch normalization biases residual blocks towards the identity function in deep networks.” NeurlPS (2020).
Brock et al.. "Characterizing signal propagation to close the performance gap in unnormalized ResNets." ICLR (2021).



Improving convergence & trainability

Accuracy (%)

CIFAR-10 classification under (8, 107%)-DP

Validation Training
Baseline (WRN-40-4 w/o batch normalization) 50.8 (0.7) 51.2 (0.7)
+ Group normalization (16 groups) 66.3 (0.6) 67.9 (0.3)
+ Larger batch size (batch size of 4096) 70.0 (0.6) 73.4 (0.9

Larger batch sizes help by reducing the scale 73

of the added noise and improving .76
signal-to-noise ratio of privatized gradient S 74
g 72
< 70 » -
oC / —e— Training Set
(t+1) = w( Z CllpC (Vl (w(t))) B 68 és// —e— Validation Set
i€B l | 55 28 29 910 911 912 913  9l4

Batch size B

Anil, Rohan, et al. "Large-scale differentially private BERT." arXiv:2108.01624 (2021).
Li, Xuechen, et al. "Large language models can be strong differentially private learners." ICLR (2022).
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Improving convergence & trainability

CIFAR-10 classification under (8, 107°)-DP

Accuracy (%)

Validation Training
Baseline (WRN-40-4 w/o batch normalization) 50.8 (0.7) 51.2 (0.7)
+ Group normalization (16 groups) 66.3 (0.6) 679 (0.3)
+ Larger batch size (batch size of 4096) 70.0 (0.6) 73.4 (0.9
+ Weight standardization 71.2 (1.0) 74.7 (1.3)
+ Augmentation multiplicity (16 augmentations) 78.4 (0.9) 79.4 (0.9

Augmentation multiplicity =1

4| B g

Fort et al. "Drawing Multiple Augmentation Samples Per Image During Training Efficiently Decreases Test Error." arXiv:2105.13343

Augmentation multiplicity = 2

»

A|B

b=

Hoffer, et al. "Augment your batch: better training with larger batches." CVPR (2020).
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Improving convergence & trainability

CIFAR-10 classification under (8, 107°)-DP

Accuracy (%)

Validation Training
Baseline (WRN-40-4 w/o batch normalization) 50.8 (0.7) 51.2 (0.7)
+ Group normalization (16 groups) 66.3 (0.6) 679 (0.3)
+ Larger batch size (batch size of 4096) 70.0 (0.6) 73.4 (0.9
+ Weight standardization 71.2 (1.0) 74.7 (1.3)
+ Augmentation multiplicity (16 augmentations) 78.4 (0.9) 79.4 (0.9

Augmentation multiplicity =1

Augmentation multiplicity = 2

4| B

1
(t+1) — (O _p —
w w Nt B

Z ClipC
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Improving convergence & trainability

CIFAR-10 classification under (8, 107°)-DP

Accuracy (%)

Validation Training
Baseline (WRN-40-4 w/o batch normalization) 50.8 (0.7) 51.2 (0.7)
+ Group normalization (16 groups) 66.3 (0.6) 679 (0.3)
+ Larger batch size (batch size of 4096) 70.0 (0.6) 73.4 (0.9
+ Weight standardization 71.2 (1.0) 74.7 (1.3)
+ Augmentation multiplicity (16 augmentations) 78.4 (0.9) 79.4 (0.9)
80
79
§78 =
Reduces the variance introduced by data 5 1
augmentation without incurring any privacy cost <76 _# —— Training Set
75 S/ —— Validation Set
74 7 % No Augmentations

2 4 8 16
Augmentation Multiplicity

- O



Improving convergence & trainability

CIFAR-10 classification under (8, 107°)-DP

Accuracy (%)

Validation Training
Baseline (WRN-40-4 w/o batch normalization) 50.8 (0.7) 51.2 (0.7)
+ Group normalization (16 groups) 66.3 (0.6) 679 (0.3)
+ Larger batch size (batch size of 4096) 70.0 (0.6) 73.4 (0.9
+ Weight standardization 71.2 (1.0)0 74.7 (1.3)
+ Augmentation multiplicity (16 augmentations) 78.4 (0.9) 79.4 (0.9
+ Parameter averaging (exponential moving average) 79.7 (0.2) 81.5 (0.2)

O



Putting it all together: CIFAR-10 w/o extra data

80
S
o
; 75 81.4% test accuracy ate=8
(@]
© L
5 70
9 Our best results are with a WRN 40-4
< 65 . & scaling up batch size, augmentation
4; A e ge e
a multiplicity & compute
=60
i 2 S 4 §) 8
E
A Yuetal., 2021c ¢ Klause et al., 2022
®  Papernot et al., 2021 —%— Dormann et al, 2021 *we train significantly larger networks
—e— Trameér and Boneh, 2021  —¢— Ours with DP than previous work @



Putting it all together: ImageNet w/o extra data

Top-1 and top-5 accuracy when training on ImageNet using DP-SGD without additional data.

Accuracy (%)

Method Model (g,6) Top-1 Top-5
Kurakin et al. (2022) ResNet-18 (13.2,1079) 6.9 -
Ours NF-ResNet-50 (8.0,8-10"7) 32.4 55.8

Significant benefits on ImageNet as well with a
50-layer Normalizer Free (NF) ResNet + tricks

But accuracy is low — compute is a limiting factor on large datasets

o



Talk outline
e What is Differential Privacy (DP)?
e Differentially Private Stochastic Gradient Descent (DP-SGD)
e Improving convergence and trainability of deep networks
e Leveraging pre-training

e Interplay between noise, batch size and compute budget

O



Pre-training can have remarkable benefits!

Fine-tuning on CIFAR-10:

e We use checkpoints of Wide-ResNets
pre-trained non-privately on ImageNet-32

e Fine-tune on CIFAR using DP-SGD

o



Pre-training can have remarkable benefits!

Fine-tuning Method ¢  Test Accuracy (%)

Median Std. Dev.

1 94.3 -
Yu et al. (2021b) 9 94.8 _
Tramer and Boneh (2021) 2 92.7 -
1 93.1 (0.03)
- 2 93.6 (0.05)
Classifier layer 4 94.0 (0.08)
8 94.2 (0.07)
1 94.8 (0.08)
2 95.4 (0.15)
All layers 4 96.1 (0.06)
8 96.6 (0.08)

Fine-tuning on CIFAR-10:

We use checkpoints of Wide-ResNets
pre-trained non-privately on ImageNet-32

Fine-tune on CIFAR using DP-SGD

Fine-tuning all layers is better

Bu et al. “Scalable and Efficient Training of Large Convolutional Neural Networks with Differential Privacy”. arXiv: 2205.10683
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Differentially Private Fine-tuning on ImageNet

e NF-ResNets pre-trained non-privately on JFT-300M

e Fine-tune on ImageNet using DP-SGD under small
compute budget

O

Brock et al. “High-performance large-scale image recognition without normalization.” ICML (2021).



Differentially Private Fine-tuning on ImageNet

Top-1 Acc (%)

e NF-ResNets pre-trained non-privately on JFT-300M

£ e Fine-tune on ImageNet using DP-SGD under small

79.7 79.9
78.4 compute budget

70 75.4 75.9 76.2

74 i —e— last layer Results:

" = o & R e Better (larger) pre-trained model leads to better
RN-50 RN-101 RN-152 RN-200 downstream results

NF-ResNet Model
e Fine-tuning only last layer better

e L ) (small distribution shift?)
ImageNet classification using extra data

O

Brock et al. “High-performance large-scale image recognition without normalization.” ICML (2021).



Top-1 Acc (%)

Better pre-training dataset leads to better downstream results

Fine-tuning last layer only.

84
81.6 82.2 .
82 Scaling up:
80 : : .
: 5 e model size: 200-layer NF-ResNet
78 765 79.2 e batch size: 2'
77.8  —e— pre-train on JFT-300M
70 | ini hs: ~800 epochs for & = 8
ore-train on JFT-4B ® training epochs: epochs for ¢ =

74 752

0.5 1 2 4 8

Results:

® Better pre-training dataset — better fine-tuning results

ImageNet classification using extra data

O

Brock et al. “High-performance large-scale image recognition without normalization.” ICML (2021).
Mehta et al. “Large scale transfer learning for differentially private image classification”. arXiv: 2205.02973



Scaling up to NFNet-F3 pre-trained on JFT-4B

Larger model with more capacity than NF-ResNet-200

Accuracy (%) Non-private

0.1 45 1.0 20 40 8.0

Top-1 77.6 83.8 844 856 86.0 86.7 88.5
Top-5 93.0 96.7 96.6 97.5 974 98.0 98.7

Strong performance, even at low ¢

~2% gap between private (¢ = 8) and non-private performance

Brock et al. “High-performance large-scale image recognition without normalization.” ICML (2021).
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Fine-tuning from JFT-300M to Places365

¢ Fine-tuning Method

Accuracy (%)

Top-1 Top-5

3 Classifier layer 54.4 844
All layers 55.1 84.6

_ Classifier layer 54.3 85.2
All layers 57.0 87.1

Fine-tuning all layers performs better for this dataset

(larger distribution shift w.r.t JFT-300M?)

NF-ResNet-50

O



Talk outline

Background: DP & DP-SGD

Improving convergence and trainability of deep networks

Leveraging pre-training

Interplay between noise, batch size and compute budget
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DP-SGD requires careful hyper-parameter tuning

Validation Accuracy (%)

20 2.5 3.0 3.5 4.0 45 5.0
Noise Parameter o

At fixed batch size: there is an optimal noise scale

O



DP-SGD requires careful hyper-parameter tuning

Validation Accuracy (%)

Validation Accuracy (%)
~
[N

Training Accuracy (%)

~l
]
I

20 25 3.0 35 40 45 5.0 1000 2500 4000 5500 7000 1000 2500 4000 5500 7000
Noise Parameter o Training Iteration Budget T Training Iteration Budget T

At fixed batch size: there is an optimal noise scale — optimal compute budget

(contrary to non-private training on training set!)

O



This optimal compute budget increases with batch size

0000
5000
0000
5000
0000
5000

0

Optimal Iteration Budget
== NN W

Leveraging larger batch sizes requires using more epochs after a threshold
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210 211 212
Batch Size B

213
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*g 800
< 700
=
A 600
S 500
o
2.400
[na)
— 300
£ 200
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78
76
Q 74
o 72
<70
68
66

28

29

—e— Training Set

—e— Validation Set

210 211 212
Batch size B

213

— DP-training requires more compute than non-private training for optimal performance

214
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This optimal compute budget increases with batch size

0000
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5000
0000
5000

0

Optimal Iteration Budget
== NN W
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Optimal Learning Rate

22

21

20

28

29

2 10 211 212
Batch Size B

213

Leveraging larger batch sizes requires using more epochs after a threshold

— DP-training requires more compute than non-private training for optimal performance

Batch size threshold determined by when the optimal learning rate becomes constant

214

o



%

%

Summary

Standard vision models can work surprisingly well with DP-SGD when combined with:

- tricks to improve convergence & trainability
- careful hyper-parameter tuning

- enough compute

Pre-training + standard models — practical levels of performance with DP-SGD

O



Are these results enough for practical use of DP-SGD?

Several additional important considerations may be involved:
e Record-level vs user-level privacy
e Choice of the privacy budget
e Careful evaluation to avoid disparate impact on under-represented groups

e Sensitivity of the pre-training dataset

O



DeepMind

Thank you! Questions?

Paper: arxiv.org/abs/2204.13650

Code: github.com/deepmind/jax_privacy
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77.6 I I | | |
0.1 0.5 1 2 4 8

Yu et al., 2021c ¢ Klause et al., 2022 -== Non-private SOTA: Yu et al., 2022
®  Papernot et al., 2021 —¥— Dérmann et al, 2021 mmm Ours
—e— Trameér and Boneh, 2021  —$— Ours

(a) CIFAR-10 without extra data (b) ImageNet with extra data
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https://arxiv.org/abs/2204.13650
https://github.com/deepmind/jax_privacy

