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Carlini, Nicholas, et al. "Extracting training data from large language models." ú÷th USENIX 
Security Symposium (USENIX Security ùø). ù÷ùø.



Models trained with current ML 
pipelines can leak training data!

Borja Balle, Giovanni Cherubin, and Jamie Hayes. "Reconstructing Training Data with 
Informed Adversaries." arXiv:ùù÷ø.÷ûÿûü (ù÷ùù).
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Summary of Results

Goal 
Train models with 
Differential Privacy (DP) to 
high accuracy → unlock ML 
on sensitive data

Results
SOTA on CIFAR10 and 
ImageNet by large margins Largest improvement to 

date on CIFAR-ø÷
Practically useful levels of 
performance on ImageNet 
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What is differential privacy?
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DP provides a formal privacy guarantee (defined by 𝜀) against data leakage

What is differential privacy?

Data Set
With 

Soham’s data

Data Set
Without 

Soham’s data

Distribution over 
models: P

Distribution over 
models: Q

Distributions are close:

KL(P | Q) = O(𝜀 2)

Soham’s data is 
protected if 𝜀 is small 

DP Algorithm
(randomized)

Differential privacy is a methodology 
to provide individual privacy during 
the analysis of datasets.𝜀-DP Algorithm

(randomized)

𝜀-DP Algorithm
(randomized)



Formal definition:

Dwork, Cynthia, and Aaron Roth. "The algorithmic foundations of differential privacy." 
Found. Trends Theor. Comput. Sci. Ā.ú-û (ù÷øû): ùøø-û÷þ.



Formal definition

Dwork, Cynthia, and Aaron Roth. "The algorithmic foundations of differential privacy." 
Found. Trends Theor. Comput. Sci. Ā.ú-û (ù÷øû): ùøø-û÷þ.

              this implies : 



An example: Private Averaging

Private 
averaging
(𝜀,𝛿)-DP

x_1, …, x_n

d-dimensional vectors 
of maximum norm C

Average 
+ Noise

x̃ = x̂ + Z

Privacy-utility trade-off:

→  𝜎 depends on privacy guarantee (𝜀, 𝛿)



Private & ConfidentialWhy DP is desirable for deploying 
models on sensitive data

● Robust to powerful adversaries:

○ Adversaries with unbounded 

computation & arbitrary side-knowledge

● Does not rely on obscurity

○ Algorithms can be public

● Quantifiable

○ with privacy budget 𝜀



Calibrating the Privacy Budget

The choice of 𝜀 is a policy question that should be informed by:

● Normative privacy requirements of each application

● Utility/accuracy requirements

𝜀
More 

privacy
Less 

privacy
1ĀĀ2.ý 4.þ4 ÿ1

𝜀 range considered in our project
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Private ML: Differentially Private SGD (DP-SGD)

Abadi, Martin, et al. "Deep learning with differential privacy." Proceedings of the ù÷øý ACM 
SIGSAC conference on computer and communications security. ù÷øý.

● Setting: a trusted party trains the ML model on a private dataset

● Updates only use privatized gradients → model can be released at any point

Privatized Average Gradient



Private ML: Differentially Private SGD (DP-SGD)

Clip gradient per sample to norm C Add Gaussian noise



Private ML: Differentially Private SGD (DP-SGD)

Clip gradient per sample to norm C Add Gaussian noise

The total privacy loss 𝜀 of the training procedure:

● Increases with number of iterations

● Decreases with added noise

● Increases with batch size
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→ different hyper-parameter & regularization settings

Challenges of DP-SGD
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Bounded privacy budget ε 

→ tradeoff between 1) # iterations & 2) amount of noise

→ different hyper-parameter & regularization settings

Clipping per sample + Noise 

→ Privatized gradient is biased and has high variance 

Making standard models work

→ L2 norm of noise scales with model dimension

→ Cannot use batch normalization

Challenges of DP-SGD



Prior Work: DP Training in Computer Vision

Large accuracy drop for DP training

Community focus on:

● Specialized architectures

● Reduction of model dimensionality 

● Modifications to DP-SGD

Kurakin, Alexey, et al.. "Toward Training at ImageNet Scale with Differential Privacy." arXiv, ù÷ùù.
Tramer, Florian, and Dan Boneh. "Differentially Private Learning Needs Better Features (or Much More Data)." ICLR, ù÷ù÷.
Yu, Da, et al. "Large Scale Private Learning via Low-rank Reparametrization." ICML ù÷ùø.
Papernot, Nicolas, et al. "Tempered Sigmoid Activations for Deep Learning with Differential Privacy." AAAI, ù÷ùø.



Standard deep learning architectures
(unlike community)

Push the limits of vanilla DP-SGD
(using enough compute & careful hyperparam tuning)

Improve trainability & convergence of DP-SGD
(using tricks from non-private training)

Our approach

Getting all the details right was crucial for good performance
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Improving convergence & trainability

CIFAR-10 classification under (8, 10⁻⁵)-DP

Standard deep networks for vision rely on 
batch normalization for good performance



Improving convergence & trainability

CIFAR-10 classification under (8, 10⁻⁵)-DP

Replacing with alternate normalizers or 
normalizer-free methods can recover 
the benefits of batch normalization

De & Smith. "Batch normalization biases residual blocks towards the identity function in deep networks." NeurIPS (ù÷ù÷).
Brock et al.. "Characterizing signal propagation to close the performance gap in unnormalized ResNets." ICLR (ù÷ùø).

crucial to place it on 
the residual branch



Improving convergence & trainability

CIFAR-10 classification under (8, 10⁻⁵)-DP

Larger batch sizes help by reducing the scale 
of the added noise and improving 
signal-to-noise ratio of privatized gradient

Anil, Rohan, et al. "Large-scale differentially private BERT." arXiv:ùø÷ÿ.÷øýùû (ù÷ùø).
Li, Xuechen, et al. "Large language models can be strong differentially private learners." ICLR (ù÷ùù).
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Improving convergence & trainability

CIFAR-10 classification under (8, 10⁻⁵)-DP

Fort et al. "Drawing Multiple Augmentation Samples Per Image During Training Efficiently Decreases Test Error." arXiv:ùø÷ü.øúúûú
Hoffer, et al. "Augment your batch: better training with larger batches." CVPR (ù÷ù÷).



Improving convergence & trainability

CIFAR-10 classification under (8, 10⁻⁵)-DP

Average over augmentations



Improving convergence & trainability

CIFAR-10 classification under (8, 10⁻⁵)-DP

Reduces the variance introduced by data 
augmentation without incurring any privacy cost



Improving convergence & trainability

CIFAR-10 classification under (8, 10⁻⁵)-DP



Putting it all together: CIFAR-10 w/o extra data

CIFAR-ø÷ classification using Wide-ResNets

81.4% test accuracy at 𝜀 = 8

Our best results are with a WRN 40-4 
& scaling up batch size, augmentation 
multiplicity & compute

*we train significantly larger networks 
with DP than previous work



Putting it all together: ImageNet w/o extra data

Significant benefits on ImageNet as well with a 
50-layer Normalizer Free (NF) ResNet + tricks 

But accuracy is low → compute is a limiting factor on large datasets
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Fine-tuning on CIFAR-10:

● We use checkpoints of Wide-ResNets 
pre-trained non-privately on ImageNet-úù

● Fine-tune on CIFAR using DP-SGD

Pre-training can have remarkable benefits!



Fine-tuning on CIFAR-10:

● We use checkpoints of Wide-ResNets 
pre-trained non-privately on ImageNet-úù

● Fine-tune on CIFAR using DP-SGD

● Fine-tuning all layers is better

Pre-training can have remarkable benefits!

CIFAR classification using extra data

Bu et al. “Scalable and Efficient Training of Large Convolutional Neural Networks with Differential Privacy”. arXiv: ùù÷ü.ø÷ýÿú



● NF-ResNets pre-trained non-privately on JFT-ú÷÷M

● Fine-tune on ImageNet using DP-SGD under small 
compute budget

Differentially Private Fine-tuning on ImageNet

Brock et al. “High-performance large-scale image recognition without normalization.” ICML (ù÷ùø).



● NF-ResNets pre-trained non-privately on JFT-ú÷÷M

● Fine-tune on ImageNet using DP-SGD under small 
compute budget

Results:

● Better (larger) pre-trained model leads to better 
downstream results

● Fine-tuning only last layer better 
(small distribution shift?)

Differentially Private Fine-tuning on ImageNet

ImageNet classification using extra data

Brock et al. “High-performance large-scale image recognition without normalization.” ICML (ù÷ùø).



Fine-tuning last layer only.

Scaling up: 

● model size: ù÷÷-layer NF-ResNet
● batch size: ùøÿ

● training epochs: ~ÿ÷÷ epochs for 𝜀 = ÿ

Results:

● Better pre-training dataset → better fine-tuning results

Better pre-training dataset leads to better downstream results

Brock et al. “High-performance large-scale image recognition without normalization.” ICML (ù÷ùø).
Mehta et al. “Large scale transfer learning for differentially private image classification”. arXiv: ùù÷ü.÷ùĀþú

ImageNet classification using extra data



Scaling up to NFNet-F3 pre-trained on JFT-4B

Brock et al. “High-performance large-scale image recognition without normalization.” ICML (ù÷ùø).

Strong performance, even at low 𝜀

~ù% gap between private (𝜀 = ÿ) and non-private performance

Larger model with more capacity than NF-ResNet-ù÷÷



Fine-tuning from JFT-300M to Places365

NF-ResNet-ü÷

Fine-tuning all layers performs better for this dataset

(larger distribution shift w.r.t JFT-300M?)



● Background: DP & DP-SGD

● Improving convergence and trainability of deep networks

● Leveraging pre-training

● Interplay between noise, batch size and compute budget

Talk outline



DP-SGD requires careful hyper-parameter tuning

At fixed batch size: there is an optimal noise scale



DP-SGD requires careful hyper-parameter tuning

At fixed batch size: there is an optimal noise scale → optimal compute budget

(contrary to non-private training on training set!)



This optimal compute budget increases with batch size

Leveraging larger batch sizes requires using more epochs after a threshold

→ DP-training requires more compute than non-private training for optimal performance



This optimal compute budget increases with batch size

Leveraging larger batch sizes requires using more epochs after a threshold

→ DP-training requires more compute than non-private training for optimal performance

Batch size threshold determined by when the optimal learning rate becomes constant



Summary

Standard vision models can work surprisingly well with DP-SGD when combined with:

- tricks to improve convergence & trainability

- careful hyper-parameter tuning

- enough compute

Pre-training + standard models → practical levels of performance with DP-SGD



Are these results enough for practical use of DP-SGD?

Several additional important considerations may be involved:

● Record-level vs user-level privacy

● Choice of the privacy budget

● Careful evaluation to avoid disparate impact on under-represented groups

● Sensitivity of the pre-training dataset



Thank you! Questions?

Paper: arxiv.org/abs/ùù÷û.øúýü÷

Code: github.com/deepmind/jax_privacy

https://arxiv.org/abs/2204.13650
https://github.com/deepmind/jax_privacy

