Unlocking High-Accuracy Differentially Private Image Classification through Scale

Paper: arxiv.org/abs/2204.13650
Code: github.com/deepmind/jax_privacy

Soham De
With Leonard Berrada*, Jamie Hayes, Samuel L Smith, Borja Balle

12/05/2022
Models trained with current ML pipelines can leak training data!
Models trained with current ML pipelines can leak training data!

Models trained with current ML pipelines can leak training data!

Fig. 1: Examples of training data points reconstructed from a 55K parameter CNN classifier trained on CIFAR-10.

Goal

Train models with *Differential Privacy (DP)* to high accuracy → unlock ML on sensitive data
Summary of Results

Goal

Train models with Differential Privacy (DP) to high accuracy → unlock ML on sensitive data
Summary of Results

Goal
Train models with Differential Privacy (DP) to high accuracy → unlock ML on sensitive data

Results
SOTA on CIFAR10 and ImageNet by large margins

Largest improvement to date on CIFAR-10
Practically useful levels of performance on ImageNet
Talk outline

- What is Differential Privacy (DP)?
- Differentially Private Stochastic Gradient Descent (DP-SGD)
- Improving convergence and trainability of deep networks
- Leveraging pre-training
- Interplay between noise, batch size and compute budget
Talk outline

- What is Differential Privacy (DP)?
- Differentially Private Stochastic Gradient Descent (DP-SGD)
- Improving convergence and trainability of deep networks
- Leveraging pre-training
- Interplay between noise, batch size and compute budget
Differential privacy is a methodology to provide individual privacy during the analysis of datasets.
What is differential privacy?

Differential privacy is a methodology to provide *individual privacy* during the analysis of datasets.

DP provides a formal privacy guarantee (defined by ε) against data leakage
Formal definition:

Definition (Differential Privacy). Let $A : \mathcal{X} \rightarrow \mathcal{Y}$ be a randomized algorithm, and let $\epsilon > 0$, $\delta \in [0, 1]$. We say that A is (ϵ, δ)-DP if for any two datasets $D, D' \in \mathcal{X}$ differing by a single element, we have that

$$\forall Y \subset \mathcal{Y}, \Pr[A(D) \in Y] \leq \exp(\epsilon)\Pr[A(D') \in Y] + \delta.$$
Definition (Differential Privacy). Let \(A : \mathcal{X} \rightarrow \mathcal{Y} \) be a randomized algorithm, and let \(\epsilon > 0, \delta \in [0, 1] \). We say that \(A \) is \((\epsilon, \delta)\text{-DP}\) if for any two datasets \(D, D' \in \mathcal{X} \) differing by a single element, we have that

\[
\forall Y \subset \mathcal{Y}, \quad \mathbb{P}[A(D) \in Y] \leq \exp(\epsilon)\mathbb{P}[A(D') \in Y] + \delta.
\]

this implies : \(KL(A(D)|A(D')) = O(\epsilon^2) \)
An example: Private Averaging

\[x_1, \ldots, x_n \text{ } \]

\(d\)-dimensional vectors of maximum norm \(C\)

Private averaging \((\epsilon, \delta)\)-DP

\[\tilde{x} = \hat{x} + Z \]

Average + Noise

\[Z \sim \mathcal{N} \left(0, \frac{C^2}{n^2} \sigma^2 I \right) \rightarrow \sigma \text{ depends on privacy guarantee } (\epsilon, \delta) \]

Privacy–utility trade-off: \(E[||\tilde{x} - \hat{x}||] \approx \frac{\sqrt{d}}{\epsilon n} \)
Why DP is desirable for deploying models on sensitive data

- **Robust to powerful adversaries:**
 - Adversaries with unbounded computation & arbitrary side-knowledge

- **Does not rely on obscurity**
 - Algorithms can be public

- **Quantifiable**
 - with privacy budget ε
Calibrating the Privacy Budget

The choice of ϵ is a policy question that should be informed by:

- Normative privacy requirements of each application
- Utility/accuracy requirements

ϵ range considered in our project
Talk outline

- What is Differential Privacy (DP)?
- Differentially Private Stochastic Gradient Descent (DP-SGD)
- Improving convergence and trainability of deep networks
- Leveraging pre-training
- Interplay between noise, batch size and compute budget
Private ML: Differentially Private SGD (DP-SGD)

\[w^{(t+1)} = w^{(t)} - \eta_t \left(\frac{1}{|B|} \sum_{i \in B} \text{clip}_C \left(\nabla l_i(w^{(t)}) \right) + \frac{\sigma C}{|B|} \xi \right) \]

- **Setting**: a trusted party trains the ML model on a private dataset
- Updates only use privatized gradients → **model can be released at any point**

Private ML: Differentially Private SGD (DP-SGD)

\[
\begin{align*}
 w^{(t+1)} &= w^{(t)} - \eta_t \left(\frac{1}{|B|} \sum_{i \in B} \text{clip}_C \left(\nabla l_i(w^{(t)}) \right) + \frac{\sigma C}{|B|} \xi \right)
\end{align*}
\]

- **Clip gradient per sample to norm C**
- **Add Gaussian noise**
Private ML: Differentially Private SGD (DP-SGD)

$$w^{(t+1)} = w^{(t)} - \eta_t \left(\frac{1}{|B|} \sum_{i \in B} \text{clip}_C \left(\nabla l_i(w^{(t)}) \right) + \frac{\sigma C}{|B|} \xi \right)$$

- Clip gradient per sample to norm C
- Add Gaussian noise

The total privacy loss ε of the training procedure:

- Increases with number of iterations
- Decreases with added noise
- Increases with batch size
Challenges of DP-SGD

1. Bounded privacy budget ϵ
 - tradeoff between 1) # iterations & 2) amount of noise
 - different hyper-parameter & regularization settings
Challenges of DP-SGD

- Bounded privacy budget \(\epsilon \)
 - tradeoff between 1) \# iterations & 2) amount of noise
 - different hyper-parameter & regularization settings

- Clipping per sample + Noise
 - Privatized gradient is biased and has high variance
Challenges of DP-SGD

- **Bounded privacy budget ϵ**
 - tradeoff between 1) # iterations & 2) amount of noise
 - different hyper-parameter & regularization settings

- **Clipping per sample + Noise**
 - Privatized gradient is biased and has high variance

- **Making standard models work**
 - L2 norm of noise scales with model dimension
 - Cannot use batch normalization
Prior Work: DP Training in Computer Vision

Large accuracy drop for DP training

Community focus on:

- Specialized architectures
- Reduction of model dimensionality
- Modifications to DP-SGD

Our approach

- Standard deep learning architectures
 (unlike community)

- Push the limits of vanilla DP-SGD
 (using enough compute & careful hyperparam tuning)

- Improve trainability & convergence of DP-SGD
 (using tricks from non-private training)

Getting all the details right was crucial for good performance
Talk outline

- What is Differential Privacy (DP)?
- Differentially Private Stochastic Gradient Descent (DP-SGD)
 - Improving convergence and trainability of deep networks
- Leveraging pre-training
- Interplay between noise, batch size and compute budget
Improving convergence & trainability

<table>
<thead>
<tr>
<th>CIFAR-10 classification under (8, 10^{-8})-DP</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Validation</td>
<td>Training</td>
</tr>
<tr>
<td>Baseline (WRN-40-4 w/o batch normalization)</td>
<td>50.8 (0.7)</td>
</tr>
</tbody>
</table>

Standard deep networks for vision rely on batch normalization for good performance.
Improving convergence & trainability

<table>
<thead>
<tr>
<th>CIFAR-10 classification under $(8, 10^{-8})$-DP</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Validation</td>
<td>Training</td>
</tr>
<tr>
<td>Baseline (WRN-40-4 w/o batch normalization)</td>
<td>50.8 (0.7)</td>
</tr>
<tr>
<td>+ Group normalization (16 groups)</td>
<td>66.3 (0.6)</td>
</tr>
</tbody>
</table>

Replacing with alternate normalizers or normalizer-free methods can recover the benefits of batch normalization.

Improving convergence & trainability

<table>
<thead>
<tr>
<th>CIFAR-10 classification under ((8, 10^{-5}))-DP</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Validation</td>
</tr>
<tr>
<td>Baseline (WRN-40-4 w/o batch normalization)</td>
<td>50.8 (0.7)</td>
</tr>
<tr>
<td>+ Group normalization (16 groups)</td>
<td>66.3 (0.6)</td>
</tr>
<tr>
<td>+ Larger batch size (batch size of 4096)</td>
<td>70.0 (0.6)</td>
</tr>
</tbody>
</table>

Larger batch sizes help by reducing the scale of the added noise and improving signal-to-noise ratio of privatized gradient

\[
 w^{(t+1)} = w^{(t)} - \eta_t \frac{1}{|B|} \sum_{i \in B} \text{clip}_C \left(\nabla l_i(w^{(t)}) \right) - \eta_t \frac{\sigma C}{|B|} \xi
\]

Li, Xuechen, et al. "Large language models can be strong differentially private learners." ICLR (2022).
Improving convergence & trainability

<table>
<thead>
<tr>
<th>CIFAR-10 classification under (8, 10⁻⁸)-DP</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Validation</td>
</tr>
<tr>
<td>Baseline (WRN-40-4 w/o batch normalization)</td>
<td>50.8 (0.7)</td>
</tr>
<tr>
<td>+ Group normalization (16 groups)</td>
<td>66.3 (0.6)</td>
</tr>
<tr>
<td>+ Larger batch size (batch size of 4096)</td>
<td>70.0 (0.6)</td>
</tr>
<tr>
<td>+ Weight standardization</td>
<td>71.2 (1.0)</td>
</tr>
</tbody>
</table>
Improving convergence & trainability

<table>
<thead>
<tr>
<th>CIFAR-10 classification under (8, 10^{-5})-DP</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Validation</td>
</tr>
<tr>
<td>Baseline (WRN-40-4 w/o batch normalization)</td>
<td>50.8 (0.7)</td>
</tr>
<tr>
<td>+ Group normalization (16 groups)</td>
<td>66.3 (0.6)</td>
</tr>
<tr>
<td>+ Larger batch size (batch size of 4096)</td>
<td>70.0 (0.6)</td>
</tr>
<tr>
<td>+ Weight standardization</td>
<td>71.2 (1.0)</td>
</tr>
<tr>
<td>+ Augmentation multiplicity (16 augmentations)</td>
<td>78.4 (0.9)</td>
</tr>
</tbody>
</table>

Fort et al. "Drawing Multiple Augmentation Samples Per Image During Training Efficiently Decreases Test Error." arXiv:2105.13343
Improving convergence & trainability

<table>
<thead>
<tr>
<th>CIFAR-10 classification under (8, 10⁻⁵)-DP</th>
<th>Accuracy (%)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline (WRN-40-4 w/o batch normalization)</td>
<td>50.8 (0.7)</td>
<td>51.2 (0.7)</td>
<td></td>
</tr>
<tr>
<td>+ Group normalization (16 groups)</td>
<td>66.3 (0.6)</td>
<td>67.9 (0.3)</td>
<td></td>
</tr>
<tr>
<td>+ Larger batch size (batch size of 4096)</td>
<td>70.0 (0.6)</td>
<td>73.4 (0.9)</td>
<td></td>
</tr>
<tr>
<td>+ Weight standardization</td>
<td>71.2 (1.0)</td>
<td>74.7 (1.3)</td>
<td></td>
</tr>
<tr>
<td>+ Augmentation multiplicity (16 augmentations)</td>
<td>78.4 (0.9)</td>
<td>79.4 (0.9)</td>
<td></td>
</tr>
</tbody>
</table>

Augmentation multiplicity

Augmentation multiplicity = 1

Augmentation multiplicity = 2

\[
\begin{align*}
 w^{(t+1)} &= w^{(t)} - \eta_t \frac{1}{|B|} \sum_{i \in B} \text{clip}_C \left(\frac{1}{|K_i|} \sum_{j \in K_i} \nabla l_j(w^{(t)}) \right) - \eta_t \frac{\sigma C}{|B|} \xi \\
\end{align*}
\]

Average over augmentations
Improving convergence & trainability

<table>
<thead>
<tr>
<th>CIFAR-10 classification under (8, 10⁻⁸)-DP</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Validation</td>
</tr>
<tr>
<td>Baseline (WRN-40-4 w/o batch normalization)</td>
<td>50.8 (0.7)</td>
</tr>
<tr>
<td>+ Group normalization (16 groups)</td>
<td>66.3 (0.6)</td>
</tr>
<tr>
<td>+ Larger batch size (batch size of 4096)</td>
<td>70.0 (0.6)</td>
</tr>
<tr>
<td>+ Weight standardization</td>
<td>71.2 (1.0)</td>
</tr>
<tr>
<td>+ Augmentation multiplicity (16 augmentations)</td>
<td>78.4 (0.9)</td>
</tr>
</tbody>
</table>

Reduces the variance introduced by data augmentation without incurring any privacy cost

![Graph showing accuracy vs. augmentation multiplicity](image)
Improving convergence & trainability

<table>
<thead>
<tr>
<th>CIFAR-10 classification under $\left(8, 10^{-8}\right)$-DP</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Validation</td>
</tr>
<tr>
<td>Baseline (WRN-40-4 w/o batch normalization)</td>
<td>50.8 (0.7)</td>
</tr>
<tr>
<td>+ Group normalization (16 groups)</td>
<td>66.3 (0.6)</td>
</tr>
<tr>
<td>+ Larger batch size (batch size of 4096)</td>
<td>70.0 (0.6)</td>
</tr>
<tr>
<td>+ Weight standardization</td>
<td>71.2 (1.0)</td>
</tr>
<tr>
<td>+ Augmentation multiplicity (16 augmentations)</td>
<td>78.4 (0.9)</td>
</tr>
<tr>
<td>+ Parameter averaging (exponential moving average)</td>
<td>79.7 (0.2)</td>
</tr>
</tbody>
</table>
Putting it all together: CIFAR-10 w/o extra data

81.4% test accuracy at $\epsilon = 8$

Our best results are with a WRN 40-4 & scaling up batch size, augmentation multiplicity & compute

we train significantly larger networks with DP than previous work
Putting it all together: ImageNet w/o extra data

Top-1 and top-5 accuracy when training on ImageNet using DP-SGD without additional data.

<table>
<thead>
<tr>
<th>Method</th>
<th>Model</th>
<th>(ϵ, δ)</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Top-1</td>
</tr>
<tr>
<td>Kurakin et al. (2022)</td>
<td>ResNet-18</td>
<td>$(13.2, 10^{-6})$</td>
<td>6.9</td>
</tr>
<tr>
<td>Ours</td>
<td>NF-ResNet-50</td>
<td>$(8.0, 8 \cdot 10^{-7})$</td>
<td>32.4</td>
</tr>
</tbody>
</table>

Significant benefits on ImageNet as well with a 50-layer Normalizer Free (NF) ResNet + tricks

But accuracy is low → compute is a limiting factor on large datasets
Talk outline

- What is Differential Privacy (DP)?
- Differentially Private Stochastic Gradient Descent (DP-SGD)
- Improving convergence and trainability of deep networks
- Leveraging pre-training
- Interplay between noise, batch size and compute budget
Pre-training can have remarkable benefits!

Fine-tuning on CIFAR-10:

- We use checkpoints of Wide-ResNets pre-trained non-privately on ImageNet-32
- Fine-tune on CIFAR using DP-SGD
Pre-training can have remarkable benefits!

<table>
<thead>
<tr>
<th>Fine-tuning Method</th>
<th>ε</th>
<th>Median</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yu et al. (2021b)</td>
<td>1</td>
<td>94.3</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>94.8</td>
<td>–</td>
</tr>
<tr>
<td>Tramèr and Boneh (2021)</td>
<td>2</td>
<td>92.7</td>
<td>–</td>
</tr>
<tr>
<td>Classifier layer</td>
<td>1</td>
<td>93.1</td>
<td>(0.03)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>93.6</td>
<td>(0.05)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>94.0</td>
<td>(0.08)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>94.2</td>
<td>(0.07)</td>
</tr>
<tr>
<td>All layers</td>
<td>1</td>
<td>94.8</td>
<td>(0.08)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>95.4</td>
<td>(0.15)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>96.1</td>
<td>(0.06)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>96.6</td>
<td>(0.08)</td>
</tr>
</tbody>
</table>

Fine-tuning on CIFAR-10:

- We use checkpoints of Wide-ResNets pre-trained non-privately on ImageNet-32
- Fine-tune on CIFAR using DP-SGD
- Fine-tuning all layers is better

Bu et al. “Scalable and Efficient Training of Large Convolutional Neural Networks with Differential Privacy”. arXiv: 2205.10683
Differentially Private Fine-tuning on ImageNet

- NF-ResNets pre-trained non-privately on JFT-300M
- Fine-tune on ImageNet using DP-SGD under small compute budget

Differentially Private Fine-tuning on ImageNet

- NF-ResNets pre-trained non-privately on JFT-300M
- Fine-tune on ImageNet using DP-SGD under small compute budget

Results:
- Better (larger) pre-trained model leads to better downstream results
- Fine-tuning only last layer better (*small distribution shift?*)

ImageNet classification using extra data

Better pre-training dataset leads to better downstream results

Fine-tuning last layer only.

Scaling up:
- model size: 200-layer NF-ResNet
- batch size: 2^{18}
- training epochs: ~800 epochs for $\varepsilon = 8$

Results:
- Better pre-training dataset \rightarrow better fine-tuning results

ImageNet classification using extra data

Scaling up to NFNet-F3 pre-trained on JFT-4B

Larger model with more capacity than NF-ResNet-200

<table>
<thead>
<tr>
<th>Accuracy (%)</th>
<th>0.1</th>
<th>0.5</th>
<th>1.0</th>
<th>2.0</th>
<th>4.0</th>
<th>8.0</th>
<th>Non-private</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top-1</td>
<td>77.6</td>
<td>83.8</td>
<td>84.4</td>
<td>85.6</td>
<td>86.0</td>
<td>86.7</td>
<td>88.5</td>
</tr>
<tr>
<td>Top-5</td>
<td>93.0</td>
<td>96.7</td>
<td>96.6</td>
<td>97.5</td>
<td>97.4</td>
<td>98.0</td>
<td>98.7</td>
</tr>
</tbody>
</table>

Strong performance, even at low ε

~2% gap between private ($\varepsilon = 8$) and non-private performance

Fine-tuning all layers performs better for this dataset
(larger distribution shift w.r.t JFT-300M?)

<table>
<thead>
<tr>
<th>ϵ</th>
<th>Fine-tuning Method</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Top-1</td>
</tr>
<tr>
<td>8</td>
<td>Classifier layer</td>
<td>54.4</td>
</tr>
<tr>
<td></td>
<td>All layers</td>
<td>55.1</td>
</tr>
<tr>
<td></td>
<td>Classifier layer</td>
<td>54.3</td>
</tr>
<tr>
<td></td>
<td>All layers</td>
<td>57.0</td>
</tr>
</tbody>
</table>

NF-ResNet-50
Talk outline

- Background: DP & DP-SGD
- Improving convergence and trainability of deep networks
- Leveraging pre-training
- Interplay between noise, batch size and compute budget
DP-SGD requires careful hyper-parameter tuning

At fixed batch size: there is an optimal noise scale
DP-SGD requires careful hyper-parameter tuning

At fixed batch size: there is an optimal noise scale \rightarrow optimal compute budget

(contrary to non-private training on training set!)
This optimal compute budget increases with batch size

Leveraging larger batch sizes requires using more epochs after a threshold

→ DP-training requires more compute than non-private training for optimal performance
This optimal compute budget increases with batch size

Leveraging larger batch sizes requires using more epochs after a threshold

→ DP-training requires more compute than non-private training for optimal performance

Batch size threshold determined by when the optimal learning rate becomes constant
Summary

- Standard vision models can work surprisingly well with DP-SGD when combined with:
 - tricks to improve convergence & trainability
 - careful hyper-parameter tuning
 - enough compute

- Pre-training + standard models → practical levels of performance with DP-SGD
Are these results enough for practical use of DP-SGD?

Several additional important considerations may be involved:

- Record-level vs user-level privacy
- Choice of the privacy budget
- Careful evaluation to avoid disparate impact on under-represented groups
- Sensitivity of the pre-training dataset
Thank you! Questions?

Paper: arxiv.org/abs/2204.13650
Code: github.com/deepmind/jax_privacy