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Normalizer-Free Networks (NFNets)
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e A new family of ResNets
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A sequence of 3 papers
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Batch Normalization Biases Residual Blocks
Towards the Identity Function in Deep Networks

Soham De Samuel L. Smith
DeepMind, London DeepMind, London
sohamde@google.com slsmith@google.com

CHARACTERIZING SIGNAL PROPAGATION TO CLOSE
THE PERFORMANCE GAP IN UNNORMALIZED RESNETS

Andrew Brock, Soham De & Samuel L. Smith
Deepmind
{aibrock. sohamde. slsmith}Raooale.com

High-Performance Large-Scale Image Recognition Without Normalization

Andrew Brock! Soham De! Samuel L. Smith! Karen Simonyan !
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Image Classification on ImageNet
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Residual networks
i
Batch normalization

Batch normalization: Accelerating deep network training by reducing internal
covariate shift

S loffe, C Szegedy, - International conference on machine ..., 2015 - proceedings.mlr.press
Abstract Training Deep Neural Networks is complicated by the fact that the distribution of

each layer's inputs changes during training, as the parameters of the previous layers

change. This slows down the training by requiring lower learning rates and careful

parameter initialization, and makes it notoriously hard to train models with saturating

nonlinearities. We refer to this phenomenon as internal covariate shift, and address the

problem by normalizing layer inputs. Our method draws its strength from making ...

Y¢ DY Cited by 25213 Related articles All 25 versions 99

= Almost all SOTA networks since
“‘"e“““”’s"”’“'sff‘) 2016 have used both:

Gpipg AdvProp (Eficlentiet BS)

1. Skip connections
2. Batch normalization

2020 2021

Why has this combination
been so dominant?

Deep residual learning for image recognition

K He, X Zhang, S Ren, J Sun - Proceedings of the IEEE ..., 2016 - openaccess.thecvf.com
Deeper neural networks are more difficult to train. We present a residual learning framework
to ease the training of networks that are substantially deeper than those used previously. We
explicitly reformulate the layers as learning residual functions with reference to the layer ...
Y¢ DP9 Cited by 71088 Related articles 9
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Batch normalization in ResNets

Residual networks:

Identity skip connection bypasses all linear/non-linear operations

(except transition blocks)

Batch normalization layer:

O

o

o

O

Ib z,y,c — Hc
Ob,x,y,c = e RS + Bc
Vo2 +e

b: minibatch, c: channels, x, y: spatial coordinates
u: per-channel mean, o: per-channel variance
y and B: “scale” and “shift” parameters

We store running averages of y and o to use at inference

Residual
path

*Standard practice to
include 2 or 3 convolutions

Conv

RelLU

BN

on each residual branch

Skip
path

O



Batch normalization in ResNets

BatchNorm has helped us made significant progress on popular benchmarks. However:

e Surprisingly expensive during training, incurring memory overhead
e Introduces a train-test discrepancy

O  Requiring maintenance of running statistics/hidden hyper-parameters
[ ]

Breaks the independence between training examples in the loss
o Hard to replicate and often the cause of bugs, especially during distributed training

o Incompatible with certain tasks (e.g. sequence modelling or contrastive losses)

*Alternative normalizers
don’t generalize as well,
and add their own
disadvantages such as
additional compute
costs at inference.
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Batch normalization in ResNets

BatchNorm has helped us made significant progress on popular benchmarks. However:

e Surprisingly expensive during training, incurring memory overhead
e Introduces a train-test discrepancy

O  Requiring maintenance of running statistics/hidden hyper-parameters
[ ]

Breaks the independence between training examples in the loss
o Hard to replicate and often the cause of bugs, especially during distributed training

o Incompatible with certain tasks (e.g. sequence modelling or contrastive losses)

Philosophy of this talk: 1. Identify the origin of BatchNorm's benefits

2. Replicate these benefits in unnormalized networks

*Alternative normalizers
don’t generalize as well,
and add their own
disadvantages such as
additional compute
costs at inference.
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Four benefits of BatchNorm (in ResNets)

1. BatchNorm biases ResNets towards the skip path, fixing bad init
2. BatchNorm enables efficient training with larger minibatches
3. BatchNorm can act as an implicit regularizer

4. BatchNorm eliminates mean-shift in ReLU networks

o



Four benefits of BatchNorm (in ResNets)

1. BatchNorm biases ResNets towards the skip path, fixing bad init

2. BatchNorm enables efficient training with larger minibatches

3. BatchNorm can act as an implicit regularizer

4. BatchNorm eliminates mean-shift in ReLU networks

This is the single most
important benefit:

Explains why we can
train BN-ResNets with
1000s of layers!
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Benefit 1: BatchNorm biases the signal at
initialization towards the skip path

e This key benefit arises when we combine ResNets
with activation normalization layers

e Normalization layers placed on the residual branch

e We compare the scale of hidden activations at init
on unnormalized and normalized ResNets

Residual
path

Conv

RelLU

BN

Skip
path

O



Unnormalized ResNets (at initialization)

O(4) Tracking the variance of the activations
0(2) 4(13

O(2
Coan ) Variance of the output of the L-th residual block = O(24)
RelLU
+O(2)
() ——®)
Conv O(1)
I
RelLU
O(1)

o



Unnormalized ResNets (at initialization)

Tracking the variance of the activations

O(2
C°|”" ) Variance of the output of the L-th residual block = O(2")
RelLU
Depth | Test accuracy Learning rate
40(2) 16 93.0+0.1 |22 “to27")
( 100 — —
o) -b 1000 = —
Conv O(1)
|
RelLU
(CIFAR-10 on a Wide-ResNet with
o(1) fixed width and varying depth)




Unnormalized ResNets (at initialization)

o(1)

o) % Divide by V2

Conv o(1)
I
RelLU
O(1)
Divide by V2
o) :+ ivide by
Conv ()(1)
l
RelLU
O(1)

Variance of the output of the L-th residual block = O(1)

Training still fails with depth:

Divide residual block by /2

Depth | Test accuracy Learning rate
16 92.4+0.1 274 (27%t027 )
100 889+04 | 2°2 %277
1000 — —

O



Unnormalized ResNets (at initialization)

O(1)
o) % Divide by V2
Conv o(1)
|
RelLU
O(1)
o 4 Divide by 2
Conv 0(1)
|
RelLU
O(1)

Why does this fail?

Residual and skip branches contribute equally to output

“Effective depth” of this ResNet = d/2

-> Signal poorly conditioned

(d = total number of residual blocks)

O



Normalized ResNets (at initialization)

}0(3)
O(1) e Residual branches always contribute O(1)

C0|nV 0(2)
o) RelLU Variance of the output of the L-th residual block = O(L)
BN
O(2)
A
O(1) ("’5
Conv O(1)
|
RelLU
O(1) T
BN
O(1)
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Normalized ResNets (at initialization)

O(L+1)
o(1) 4(13 f
Conv O(L)
I
RelLU
O(1) 71
BN
O(L)

BatchNorm downscales L-th residual branch by O(vL)

Residual branch contributes 1/(L+1) fraction of the variance
Output signal dominated by skip path for large L
“Effective depth” < d

o



Normalized ResNets (at initialization)

BatchNorm downscales L-th residual branch by O(vL)

Residual branch contributes 1/(L+1) fraction of the variance
Output signal dominated by skip path for large L
“Effective depth” < d

Optimal learning rate almost independent of depth

Batch Normalization
Depth | Test accuracy Learning rate
16 93.54+0.1 [ 27 (2 " t027)

100 94.7 + 0.1 27127210279
1000 94.6 + 0.1 272 (273 t027Y)

o



Simplest way to recover this benefit?

BatchNorm downscales L-th residual branch by O(vL)

Depth of typical residual block: O(d)

- BatchNorm downscales by O(v/d) on average

o



Simplest way to recover this benefit?

BatchNorm downscales L-th residual branch by O(vL)

Depth of typical residual block: O(d)

- BatchNorm downscales by O(v/d) on average

Skiplnit:

Include a learnable scalar multiplier on each residual
branch initialized to a < 1/v/d

o



Simplest way to recover this benefit?

Skiplnit can train very deep residual networks w/o BatchNorm

% Optimal learning rate almost independent of depth
+

SkipInit (o. = 1/+/d)

‘|1 Depth | Test accuracy Learning rate
— 16 93.0+0.1 |22 %to27 1)

-1 10—2 -1
| 100 942401 | 27'©@2%t27h
ReLU 1000 942400 |27'(@2 %027}

SkipInit (oo = 0)

Depth | Test accuracy Learning rate
16 93.3+0.1 | 272 %t0279)
100 94.2+0.1 | 272©2 %0272
1000 943+02 | 272©23%t027h
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Benefits 2 and 3:
Large batch training and implicit regularization

These two benefits are best identified by comparing
BN-ResNets and Skiplnit-ResNets at a range of batch sizes

We train a 16-4 Wide-ResNet on CIFAR-10 for 200 epochs

At each batch size, we tune the learning rate over a
logarithmic grid, in order to identify:

1. Learning rate which minimizes training loss

2. Learning rate which maximizes test accuracy

O



Benefits 2 and 3:

0.95

0.93

Optimal test accuracy
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Batch size

Optimal training loss
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Skiplnit reaches smaller training losses than BatchNorm but...
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Benefits 2 and 3:
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Batch size

e Two additional benefits:
1. Implicit regularization*

o
o
5

Optimal training loss
o
o

=
o
s

o
o
@

o
o
[}

[y

—+— w/ batch norm |
—+—wj/o batch norm

—+— Skiplnit |
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Batch size

Skiplnit reaches smaller training losses than BatchNorm but...
*Believed to arise from the noise in the

batch statistics. E.g. see Luo et al,

Towards Understanding Regularization

in Batch Normalization, ICLR 2019

Requires us to tune "ghost batch size"

O


https://arxiv.org/abs/1809.00846
https://arxiv.org/abs/1809.00846

Benefits 2 and 3:

0.95 0.05
- o —+$— w/ batch norm |
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Batch size Batch size

e Skiplnit reaches smaller training losses than BatchNorm but...

*Believed to arise from the noise in the
e Two additional benefits: batch statistics. E.g. see Luo et al,,

Towards Understanding Regularization

1 Impl'c't regularlzatlon in Batch Normalization, ICLR 2019

2. Efficient large batch training
Requires us to tune "ghost batch size"


https://arxiv.org/abs/1809.00846
https://arxiv.org/abs/1809.00846

Why can BatchNorm scale to larger batch sizes?
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Why can BatchNorm scale to larger batch sizes?
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Why can BatchNorm scale to larger batch sizes?
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e BatchNorm increases the maximum stable learning rate

o suggests the loss landscape is better conditioned*

e Note: small batch training is noise dominated, not curvature dominated

*See Santurkar et al, How Does Batch Normalization Help Optimization?, NeurlPS 2018, Bjorck et al., Understanding Batch Normalization, b"
NeurlPS 2018, and Smith et al, On the Generalization Benefit of Noise in Stochastic Gradient Descent, ICML 2020.



https://arxiv.org/abs/1805.11604
https://arxiv.org/abs/1806.02375
https://arxiv.org/pdf/2006.15081.pdf

Benefit 4: Eliminating mean-shift (in ReLU networks)

Variance of signal on skip path at init grows linearly as predicted

w 5121 X BatchNorm Moving Variance X
% 261 X Variance on Residual Branch )K'

® ns{ + Variance on Skip Path ¥
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1 2 4 8 16 32 6 128 256 512
Network Depth (number of residual blocks)

Deep linear normalized ResNet



Benefit 4: Eliminating mean-shift (in ReLU networks)

Variance of signal on skip path at init grows linearly as predicted

But in ReLU networks, the squared BatchNorm means also grow linearly

Why?
w 5121 X BatchNorm Moving Variance l,*
5 61 > Variance on Residual Branch )K’
® s| -+ Variance on Skip Path x*
2 @l —— y=1 )K/
%] S AyaEs :
o 2 y=x ¥
@
Y 161 X
5> 2
no4 K
o R T

1 2 4 8 16 32 6 128 256 512
Network Depth (number of residual blocks)

Deep linear normalized ResNet

Mean Scale of Batch Statistics

512

256 1

128

32 1

16

% BatchNorm Moving Mean Squared ,:

»*  BatchNorm Moving Variance /:'/x

% Variance on Residual Branch x".-~ .

X Variance on Skip Path .- X’
---= y=x/n X/::,x'/x/

e = _— z/X 9
y=(1 lln)x,X/, /,x
- y= 1 /,/)( /X’

/X 9
el L T G
/X/

X
s’ .
I T S e e
1 2

) 8 16 32 6 128 256 512
Network Depth (number of residual blocks)

Deep RelLU normalized ResNet
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Benefit 4: Eliminating mean-shift (in ReLU networks)

Variance of signal on skip path at init grows linearly as predicted

But in ReLU networks, the squared BatchNorm means also grow linearly

Why? Because the outputs of ReLU activations have positive mean ReLU(gj) — ma;;(g;) ())

. . 512 A . X
w 5121 X BatchNorm Moving Variance K 9 x  BatchNorm Moving Mean Squared g
+ 61 > Variance on Residual Branch E 3 + 561  x  BatchNorm Moving Variance /:/’
S : 5 ~ = . : g x
E ws| -+ Variance on Skip Path ¥ § 128{ X Variance on Residual Branch x .-~ .
n ’// &a X 5 ,/,‘K x/
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Network Depth (number of residual blocks) Network Depth (number of residual blocks)

Deep linear normalized ResNet Deep RelLU normalized ResNet @



Why is there a mean-shift?

Outputs also have non-zero

mean almost surely ———

Inputs to conv have
positive mean

!

Conv

I
/ ReLU

I
BN

O



Why is there a mean-shift?

Outputs also have non-zero 4@%

mean almost surely ———
Conv

Inputs to conv have / |
positive mean RelLU

BN

mean-shift
compounds
on skip path,
but harmless

7

BatchNorm resets mean to

zero, so it cannot compound

on residual path

*ReLU-BN-Conv
ordering trains
equally stably
while avoiding
the mean-shift
on the skip path

O



Why is there a mean-shift?

If the activation function g(x) is not
antisymmetric, the output of the conv

layer will have mean proportional to u,,

z = Wg(z)
zi = Z;V Wi jg(z;)

E(zi) = Npgpw;,.
where pywy, . is the mean of the it row of W

Jacot et al,, Order and Chaos: NTK views on DNN Normalization,
Checkerboard and Boundary Artifacts, 2019

Outputs also have non-zero 4@%

mean almost surely ———
Conv

Inputs to conv have / |
positive mean ReILU

BN

7

BatchNorm resets mean to
zero, so it cannot compound
on residual path

mean-shift
compounds
on skip path,
but harmless

Even when sampled from N(O, 1),
any specific initialization of W will

almost surely have non-zeroyu,,

(even in infinite width limit)

O


https://arxiv.org/abs/1907.05715
https://arxiv.org/abs/1907.05715

Four benefits of BatchNorm (in ResNets)

1. BatchNorm biases ResNets towards the skip path, fixing bad init
2. BatchNorm enables efficient training with larger minibatches
3. BatchNorm can act as an implicit regularizer

4. BatchNorm eliminates mean-shift in ReLU networks

Can we build normalizer-free networks that recover each of these benefits? @



The Normalizer-Free (NF-) Strategy

e Compatible with most existing ResNets architectures

e Fixes Initialization by downscaling residual branch and eliminating mean shift:
o Downscale residual branch by predicting the expected variance at init
o  Eliminate mean-shift using “Scaled Weight Standardization”

\WSConvV




The Normalizer-Free (NF-) Strategy

Compatible with most existing ResNets architectures

Fixes Initialization by downscaling residual branch and eliminating mean shift:

o Downscale residual branch by predicting the expected variance at init
o  Eliminate mean-shift using “Scaled Weight Standardization”

\WSConvV e

We also get competitive results on ResNets using Skiplnit + Scaled WS,
but the NF-strategy above is more stable at large learning rates

O



Scaled Weight Standardization

Weight Standardization (WS) prevents mean-shift by reparameterizing the model to ensure
the mean of each row of the weight matrix is exactly zero

e We use a slight modification (“Scaled Weight Standardization”) which includes a
nonlinearity-specific gain (y) and applies fan-in scaling (1/sqrt(N)) to preserve signal variance

- Wi — bw,
W' - . sJ -
5 ¥ O'Wz.,_\/N

where pyy, - and oy, . are the mean and standard deviation of the it" row of W:

_ 1 N w7 . o __ 1 N 1172 2
Hw; . = NZJ' Wij, and oy, = NZ;‘ Wi g — b »

Huang et al,, Centered Weight Normalization in Accelerating Training of Deep Neural Networks, ICCV 2017

Qiao et al., Micro-Batch Training with Batch-Channel Normalization and Weight Standardization

O


https://openaccess.thecvf.com/content_ICCV_2017/papers/Huang_Centered_Weight_Normalization_ICCV_2017_paper.pdf
https://arxiv.org/abs/1903.10520

*Note: none of the limitations

Scaled Weight Standardization of activation normalizers but

performs poorly with
depthwise convolutions

Weight Standardization (WS) prevents mean-shift by reparameterizing the model to ensure
the mean of each row of the weight matrix is exactly zero

e We use a slight modification (“Scaled Weight Standardization”) which includes a
nonlinearity-specific gain (y) and applies fan-in scaling (1/sqrt(N)) to preserve signal variance

- Wi — bw,
W' —_— . sJ -
5 ¥ O'Wz.,_\/N

where pyy, - and oy, . are the mean and standard deviation of the it" row of W:

_ 3 N g 2 _ LNV gse 2
Hw; . = N‘Zj Wij, and oy, = NZ;‘ Wi g — b »

Huang et al,, Centered Weight Normalization in Accelerating Training of Deep Neural Networks, ICCV 2017 bl’
Qiao et al, Micro-Batch Training with Batch-Channel Normalization and Weight Standardization



https://openaccess.thecvf.com/content_ICCV_2017/papers/Huang_Centered_Weight_Normalization_ICCV_2017_paper.pdf
https://arxiv.org/abs/1903.10520

Signal propagation in NF-ResNets

ResNet-600 with 4 transition blocks marked by black dots
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Combined with Scaled Weight Standardization, the hidden activation statistics
of NF-ResNets almost exactly match the statistics of BN-ResNets at init
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Signal propagation in NF-ResNets

ResNet-600 with 4 transition blocks marked by black dots
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Combined with Scaled Weight Standardization, the hidden activation statistics
of NF-ResNets almost exactly match the statistics of BN-ResNets at init

Note, it is often sufficient to consider the forward pass in ResNets @
at initialization because the network is effectively shallow



NF-ResNets at batch size 1024

e Without regularization, NF-ResNets achieve smaller training losses than BN-ResNets, but
worse generalization (they do not share BatchNorm's implicit regularization effect)

e With Dropout and Stochastic Depth, NF-ResNets match BN-ResNets on ImageNet

NF-ResNets (ours) BN-ResNets

Unreg.

Reg.

Unreg.

Reg.

RNS50

75.8+ .1

76.8 +.1

76.8+.1

76.4+£.1

RN101

77.1+£.1

784+ .1

78.0£.1

78.1+.1

RN152

776 £.1

79.1+ .1

78.6 £ .2

78.8+t.1

RN200

77.9+ .2

79.6 £ .1

79.0 £ .2

79.2+.1

RN288

78.1+£.1"

795+ .1

8.8+ .1

795+ .1

Top-1Accuracy on ImageNet,

no extra data

o



NF-ResNets at batch size 1024

Without regularization, NF-ResNets achieve smaller training losses than BN-ResNets, but

worse generalization (they do not share BatchNorm's implicit regularization effect)

With Dropout and Stochastic Depth, NF-ResNets match BN-ResNets on ImageNet

NF-ResNets achieve substantially higher performance after pre-training

NF-ResNets (ours)

BN-ResNets

Unreg.

Reg.

Unreg.

Reg.

| 224px | 320px | 384px

RNS50

75.8%.1

76.8+.1

76.8 .1

76.4+£.1

RN101

77.1+£.1

784+ .1

78.0£.1

78.1+.1

BN-ResNet-50
NF-ResNet-50

Top-1Accuracy

RN152

776 £.1

79.1+ .1

78.6 £ .2

78.8+t.1

RN200

779+ .2

79.6 £ .1

79.0 £ .2

79.2+.1

BN-ResNet-101
NF-ResNet-101

RN288

78.1+£.1"

795+ .1

78.8+£.1

795+ .1

Top-1Accuracy on ImageNet,

no extra data

BN-ResNet-152
NF-ResNet-152

BN-ResNet-200
NF-ResNet-200

78.1 79.6 79.9

79.5 80.9 81.1 on ImageNet,
80.8 82.2 825 after pre-training
814 82.7 83.2 on JFT

81.8 83.1 83.4

82.7 83.6 84.0

81.8 83.1 235

82.9 84.1 84.3 @




Four benefits of BatchNorm (in ResNets)

1. BatchNorm biases ResNets towards the skip path, fixing bad init
(recover with the NF-Strategy)

2. BatchNorm enables efficient training with larger minibatches®

3. BatchNorm can act as an implicit regularizer
(Can be detrimental when pretraining on massive datasets. Recover with explicit regularization if required)

4. BatchNorm eliminates mean-shift in ReLU networks
(recover with scaled weight standardization)

O



Alternative methods for large batch training

Many methods enable faster convergence on ill-conditioned losses:

e Momentum

e Adaptive gradient methods like Adam

e Second order methods like KFAC

e Normalized optimizers like LARS or Fromage

e Gradient clipping
(Noise dominated,
small learning rate)

We expect these methods to perform no better than SGD if the batch size is small,

but to outperform SGD when the batch size is large
(Curvature dominated,

large learning rate)

Zhang et al,, Which Algorithmic Choices Matter at Which Batch Sizes? Insights From a Noisy Quadratic Model, NeurlPS 2019.

Smith et al., On the Generalization Benefit of Noise in Stochastic Gradient Descent, ICML 2020.
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https://arxiv.org/abs/1907.04164
https://arxiv.org/abs/2006.15081

“Adaptive Gradient Clipping”

Intuition: Parameter updates should be small relative to the magnitude of the weight

Consider the gradient descent update for layer ¢ : AWE = —hGe

£ £
AW _ 3 IG |k
A single gradient descent step will change the original weights by: IWEe|| —

Use above ratio to clip gradients (in practice we use unit-wise ratios):

Wik e NGillF
AWlle e 5 > A
Gt — IGE|r IWE% )

G¢ otherwise.

G,.’: i denotes the fan-in extent (channels and spatial dimensions)

Frobenius norm of W capped below at 1e-3

W r

O



Adaptive Gradient Clipping: Ablations

e AGC can train Normalizer-Free ResNets stably at high batch sizes with large learning rates,
and with very strong augmentations

e Optimal clipping values depend on batch size

o This is expected: training instability is related to large batch sizes/learning rates

80 ResNet50
> 1 : 3 -
] 76— BatchNorm ‘ll 2) 761 —e— B=256
i 741 NF-ResNet II By —e— B=512
a = NF-ResNet+AGC ] & 45| —e— B=1024
o o
= 72| —e— ResNet50 ] = —e— B=2048
---- ResNet200 ! —e— B=4096
70— . . 74— . . . .
256 512 1024 2048 4096 0.01 002 0.04 0.08 0.16
Batch Size B Clipping Threshold A
(@) (b)
Figure 2. (a) AGC efficiently scales NF-ResNets to larger batch bl’

sizes. (b) The performance across different clipping thresholds .



Scaling Normalizer-Free Networks to SOTA

e We now have all the pieces required to remove BatchNorm from our networks

e However the existing SOTA architecture (EfficientNets) is co-adapted to a specific form
of BatchNorm, and contains Depthwise-Convs, which don’t work well with Scaled WS

e We therefore set out to design a new SOTA model family

e Unlike EfficientNets, which were designed to minimize theoretical FLOPS, we chose to
design networks to minimize actual training latency on target accelerators

O



The NFNet Architecture

Start with simple baseline (SE-ResNeXt-D) and hand-tune using simple best
practices and considering the specific properties of existing accelerators

e Different depth scaling pattern, and gently scaled input resolution

e Second added 3x3 convy, group widths of 128

e Different width pattern, no width scaling

Stage Widths:
ResNet: [256, 512, 1024, 2048]
@ o ° NFNet: [256, 512, 1536, 1536]
Stage Depths:
ResNet: [3, 4,6, 3], [3, 4, 23, 3]..
NFNet: [1,2,6,3] *N
Figure 3. Summary of NFNet bottleneck block design and archi-
tectural differences. See Figure 5 in Appendix C for more details.

O



The NFNet Architecture

NFNets benefit from very strong data augmentations

e \ery expressive (without the implicit regularization of BatchNorm)

Table 2. The effect of architectural modifications and data augmen-
tation on ImageNet Top-1 accuracy (averaged over 3 seeds).

FO F1 F2 F3
Baseline 804 | 81.7 | 82.0 | 82.3
+ Modified Width 809 | 81.8 | 82.0 | 82.3
+ Second Conv 81.3 | 82.2 | 824 | 82.7
+ MixUp 82.2 | 829 | 83.1 | 83.5
+ RandAugment 83.2 | 84.6 | 84.8 | 85.0
+ CutMix 83.6 | 84.7 | 85.1 | 85.7



ImageNet Results

Directly optimizing for speed on accelerators yields big speedups, and a new
state-of-the-art on ImageNet (8.7x faster than EfficientNet-B7 to same accuracy).

ImageNet Top-1 Accuracy (%)

87

&

&

®

&

&

@
-

Training Latency (s/step) on TPUv3, Batch Size per Device = 32

F3 I . —=
JambdaNet-420
i “BoTNet-128-T7 _ EfMNet7
/’/ SR e el
FQ, G oo
-~“EffNet-B5
LambdaNet-lBZ
" *DelT-384
1 DelT- 234
f BoTNet-59
|
/
!
JEffNet-B2

0.0 02 04 06

08 10 12 14

*With Sharpness Aware
Minimization (SAM), this
increases to 86.5% top-1.
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ImageNet Results

Table 3. ImageNet Accuracy comparison for NFNets and a representative set of models, including SENet (Hu et al., 2018), LambdaNet,
(Bello, 2021), BoTNet (Srinivas et al., 2021), and DelT (Touvron et al., 2020). Except for results using SAM, our results are averaged over
three random seeds. Latencies are given as the time in milliseconds required to perform a single full training step on TPU or GPU (V100).

Model | #FLOPs  #Params | Top-1 Top-5 | TPUV3 Train GPU Train
ResNet-50 4.10B  26.0M | 78.6 943 41.6ms 35.3ms
EffNet-BO 0.39B  53M | 77.1 933 51.1ms 44.8ms
SENet-50 4.09B  28.0M | 794 946 64.3ms 59.4ms
NFNet-F0 1238B  71.5M | 836 968 73.3ms 56.7ms
EffNet-B3 1.80B  12.0M | 816  95.7 129.5ms 116.6ms
LambdaNet-152 - 51.56M | 83.0  96.3 138.3ms 135.2ms
SENet-152 19.04B  66.6M | 831  96.4 149.9ms 151.2ms
BoTNet-110 10.90B  54.7M | 82.8  96.3 181.3ms -
NFNet-F1 3554B  132.6M | 847 971 158.5ms 133.9ms
EffNet-B4 4.20B  19.0M | 829 964 | 245.9ms 221.6ms
BoTNet-128-T5 19.30B  75.IM | 835 965 | 355.2ms -
NFNet-F2 62.59B 193.8M | 851 973 | 295.8ms 226.3ms
SENet-350 52.90B  115.2M | 838 96.6 | 593.6ms -
EffNet-B5 9.90B  30.0M | 83.7 96.7 | 450.5ms 458.9ms
LambdaNet-350 - 105.8M | 845 97.0 | 47l.4ms -
BoTNet-77-T6 23.30B  53.9M | 84.0 96.7 | 578.1ms -
NFNet-F3 114.76B  2549M | 857 97.5 | 532.2ms 524.5ms
LambdaNet-420 - 124.8M | 848 97.0 | 593.9ms -
EffNet-B6 19.00B  43.0M | 84.0 96.8 | 775.7ms 868.2ms
BoTNet-128-T7 45.80B  75.1IM | 84.7 97.0 | 804.5ms -
NFNet-F4 21524B 316.1M | 859 97.6 | 10333ms  1190.6ms
EffNet-B7 37.00B  66.0M | 84.7 970 | 1397.0ms  1753.3ms
DelT 1000 epochs - 87.0M 85.2 - - -
EffNet-B§+MaxUp | 62.50B  87.4M | 858  — - -
NFNet-F5 289.76B  3772M | 860 97.6 | 1398.5ms  2177.lms
NFNet-F5+SAM | 289.76B  377.2M | 86.3  97.9 | 1958.0ms -
NFNet-F6+SAM | 377.28B  4384M | 865 979 | 2774.1ms -




Transferring from JFT

e Inthis setting, NFNets obtain second-best performance while using ~12x less

compute than the current state of the art

Model

#FLOPS #Params

ImageNet Top-1

TPUv3-core-days

NFNet-F4+ (ours)

NFENet-F4 (ours)

EffNet-L2 + Meta Pseudo Labels
EffNet-L2 + NoisyStudent + SAM
ViT-H/14

ViT-L/16

BiT-L ResNet152x4

ResNeXt-101 32x48d (1G-940M)

367B
215B

527TM
316M
480M
480M
632M
307TM
928M
829M

89.2
89.2
90.2
88.6
88.55 4+ 0.04
87.76 +0.03
87.54 +0.02
86.4

1.86k
3.7k
22.5k
12.3k
2.5k
0.68k
9.9k

O



Conclusions

e We remove BatchNorm by studying and replicating its effects on signal propagation
e Downscales residual branch o NF-strategy

e Enables large batch training » ® Adaptive gradient clipping
e Explicit regularization
[ J

Scaled Weight Standardization

e Implicit regularization
e Prevents mean-shift

e The resulting Normalizer-Free ResNets attain similar performance to BN-ResNets on
ImageNet, and substantially outperform BN-ResNets after large-scale pre-training

e We introduce the NFNet model family, which set a new ImageNet SOTA of 86.5%,
while being significantly faster to train than existing networks @



Try our models!

e If you're currently using ResNets for a vision backbone, our NFNet models
are a drop-in replacement and are substantially more expressive

e Code and pre-trained JAX/Haiku models available at http://dpmd.ai/nfnets

O


http://dpmd.ai/nfnets
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Batch normalization + Residual networks

Led to a dramatic improvement in performance

e Train significantly deeper networks (1000+ lavers)

e Faster convergence

e Better generalization

Origins of these benefits are not well understood

Plots from: Li et al., Visualizing the Loss Landscape of Neural Nets, NeurlPS 2018

(a) without skip connections

(b) with skip connections


https://arxiv.org/abs/1712.09913

Batch normalization + Residual networks

Led to a dramatic improvement in performance

e Train significantly deeper networks (1000+ lavers)

e Faster convergence

e Better generalization

Origins of these benefits are not well understood

Plots from: Sankararaman et al.,, The Impact of Neural Network Overparameterization on
Gradient Confusion and Stochastic Gradient Descent, ICML 2020
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https://arxiv.org/abs/1904.06963
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Intuition from deep linear networks

Linear ResNet = ensemble of paths
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BatchNorm biases linear ResNets towards shallow paths at initialization
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Implications?

All trainable deep networks use one of the following:

BatchNorm + ResNet
Orthogonal Initialization + antisymmetric activations (e.g. Tanh)
Skiplnit (or alternatives like Fixup) + ResNet

Common property: Initialize layers/residual blocks close to the identity function

O



Implications?

All trainable deep networks use one of the following:

e BatchNorm + ResNet
e Orthogonal Initialization + antisymmetric activations (e.g. Tanh)
e SkiplInit (or alternatives like Fixup) + ResNet

Common property: Initialize layers/residual blocks close to the identity function

( lyl

Idea extends to other normalization schemes: T — F —P

LN > Ll+1

(a) post-norm residual unit

e FE.g. LayerNorm in Transformers should be
placed on residual path for easier training (

T — LN —){ F &)&9—) Zi4+1 @

(b) pre-norm residual unit




This mean shift accumulates with depth!

ResNet-600 with 4 transition blocks marked by black dots
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Related Work

e GroupNorm + Weight Standardization

©  Noted by Brain Zurich as being a good drop-in replacement for BN

o  We find it improves self-supervised performance on SimCLR

Activation-based Normalizers

Layer Norm Instance Norm Group Norm
P o <

=

H.W

Figure 2. Normalization methods. Each subplot shows a feature map tensor, with NV as the batch axis, C' as the channel axis, and (/1. W)

Weight Standardization

Kernel Size

as the spatial axes. The pixels in blue are normalized by the same mean and variance, computed by aggregating the values of these pixels.

Group Normalization

Yuxin Wu Kaiming He

Micro-Batch Training with Batch-Channel
Normalization and Weight Standardization

Siyuan Qiao, Huiyu Wang, Chenxi Liu, Wei Shen, and Alan Vuille, Fellow, IEEE
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Signal Propagation Plots
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Directly measuring statistics of hidden activations helps characterize how signals evolve
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Allows comparison of different architectures
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The Mean Shift Issue

To develop an intuition for this phenomenon, consider the transformation z = Wg(x), where W is
arbitrary and fixed, and ¢(-) is an activation function that acts component-wise on iid inputs x such
that g(x) is also iid. Thus, g(-) can be any popular activation function like ReLLU, tanh, SiL.U, etc.
Let E(g(x;)) = pg and Var(g(z;)) = o, for all dimensions i. It is straightforward to show that the

expected value and the variance of any unit ¢ of the output z; = Z;V W; jg(x;) is given by:

E(z) = Nugpw, ., and Var(z) = No,(op, + iy, ), (1)
where py, - and oy, . are the mean and standard deviation of the ith row of W:
N N
lu’Wi,- = _]{_f Zg Wi’j’ and 0-124/'1". - -]%7‘ ZJ W’I,Q,_] - IU'%VI (2)
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The Mean Shift Issue

To develop an intuition for this phenomenon, consider the transformation z = Wg(x), where W is
arbitrary and fixed, and ¢(-) is an activation function that acts component-wise on iid inputs x such
that g(x) is also iid. Thus, g(-) can be any popular activation function like ReLLU, tanh, SiL.U, etc.
Let E(g(x;)) = pg and Var(g(z;)) = o, for all dimensions i. It is straightforward to show that the

expected value and the variance of any unit ¢ of the output z; = Z;V W; jg(x;) is given by:
E(2) = Nitgiw, ., and Var(z) = No2(o, + iy, ), (n

where py, - and oy, . are the mean and standard deviation of the ith row of W:

N
Hw; . = 7\/1“23 Wi, and (7124/1. = NZ W (2)

) > O} mp EC) = 2E(yy)

(He init, any network width) @

[ 4:(|/LWz'




The Mean Shift Issue {, ( ‘ 5 W,

) >0

To develop an intuition for this phenomenon, consider the transformation z = Wg(x), where W is
arbitrary and fixed, and ¢(-) is an activation function that acts component-wise on iid inputs x such
that g(x) is also iid. Thus, g(-) can be any popular activation function like ReLLU, tanh, SiL.U, etc.
Let E(g(x;)) = pg and Var(g(z;)) = o, for all dimensions i. It is straightforward to show that the

expected value and the variance of any unit ¢ of the output z; = Z;V W; jg(x;) is given by:

E(z) = Npguw,., and Var(z) = Nog(ogy, + tiy, ), (1)
where py, - and oy, . are the mean and standard deviation of the ith row of W:
N N
lu’Wi,- = —]{-f Z] Wi’j’ and O-IQ/Vi’. - —]%7' ZJ W’I,Q,_] - “%/Vz (2)

E(ugy,) = (1/N?)D ) E(Wi;Wik) A
J k

E(z2) = NZE(p2ué,
LRI D ICT 2 =) (29 )
k - @V J (e




Gradient Clipping

e Often used in language modeling to stabilize training

e Allows training with larger learning rates

Typically performed by constraining the norm of the gradient:

Argn iG] > A,

G otherwise.

G —

But performance is very sensitive to clipping threshold A
(requires retuning when varying model depth, batch size and learning rate)

Pascanu et al., On the difficulty of training recurrent neural networks, ICML 2013.
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http://proceedings.mlr.press/v28/pascanu13.pdf

