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Normalizer-Free Networks (NFNets)

● A new family of ResNets

● Normalizer-Free

○ No BatchNorm!

● State-of-the-art on ImageNet for a 
range of training latencies

○ Up to 86.5% top-1 w/o extra data

○ 8.7x faster to train than EfficientNet-B7 
to same validation accuracy

● Code in JAX: http://dpmd.ai/nfnets

http://dpmd.ai/nfnets


A sequence of 3 papers
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Karen Simonyan



Batch normalization

Residual networks

Almost all SOTA networks since 
2016 have used both:

1. Skip connections
2. Batch normalization

Why has this combination 
been so dominant?



Batch normalization in ResNets

Residual networks:

Identity skip connection bypasses all linear/non-linear operations                                                                       
(except transition blocks)

Batch normalization layer:

○ b: minibatch, c: channels, x, y: spatial coordinates

○ μ: per-channel mean, σ: per-channel variance

○ γ and β: “scale” and “shift” parameters

○ We store running averages of μ and σ to use at inference

*Standard practice to 
include 2 or 3 convolutions 

on each residual branch

Skip 
path

Residual 
path



Batch normalization in ResNets

BatchNorm has helped us made significant progress on popular benchmarks. However:

● Surprisingly expensive during training, incurring memory overhead

● Introduces a train-test discrepancy

○ Requiring maintenance of running statistics/hidden hyper-parameters

● Breaks the independence between training examples in the loss

○ Hard to replicate and often the cause of bugs, especially during distributed training

○ Incompatible with certain tasks (e.g. sequence modelling or contrastive losses)
*Alternative normalizers 
don’t generalize as well, 

and add their own 
disadvantages such as 

additional compute 
costs at inference.



Batch normalization in ResNets

BatchNorm has helped us made significant progress on popular benchmarks. However:

● Surprisingly expensive during training, incurring memory overhead

● Introduces a train-test discrepancy

○ Requiring maintenance of running statistics/hidden hyper-parameters

● Breaks the independence between training examples in the loss

○ Hard to replicate and often the cause of bugs, especially during distributed training

○ Incompatible with certain tasks (e.g. sequence modelling or contrastive losses)

Philosophy of this talk: 1. Identify the origin of BatchNorm's benefits

2. Replicate these benefits in unnormalized networks

*Alternative normalizers 
don’t generalize as well, 

and add their own 
disadvantages such as 

additional compute 
costs at inference.



1. BatchNorm biases ResNets towards the skip path, fixing bad init

2. BatchNorm enables efficient training with larger minibatches

3. BatchNorm can act as an implicit regularizer

4. BatchNorm eliminates mean-shift in ReLU networks

Four benefits of BatchNorm (in ResNets)



1. BatchNorm biases ResNets towards the skip path, fixing bad init

2. BatchNorm enables efficient training with larger minibatches

3. BatchNorm can act as an implicit regularizer

4. BatchNorm eliminates mean-shift in ReLU networks

Four benefits of BatchNorm (in ResNets)

This is the single most 
important benefit: 

Explains why we can 
train BN-ResNets with 
1000s of layers!



Benefit 1: BatchNorm biases the signal at 
initialization towards the skip path

● This key benefit arises when we combine ResNets 
with activation normalization layers

● Normalization layers placed on the residual branch

● We compare the scale of hidden activations at init 
on unnormalized and normalized ResNets

Skip 
path

Residual 
path



Unnormalized ResNets (at initialization)

Tracking the variance of the activations

Variance of the output of the L-th residual block = O(2L)
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Unnormalized ResNets (at initialization)

Tracking the variance of the activations

Variance of the output of the L-th residual block = O(2L)

                                         (CIFAR-10 on a Wide-ResNet with 
fixed width and varying depth)O(1)

O(1)

O(1)

O(2)

O(2)

O(2)

O(4)



Unnormalized ResNets (at initialization)

O(1)

O(1)

O(1)

O(1)

O(1)
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O(1)

Divide by √2

Divide by √2 Variance of the output of the L-th residual block = O(1)

Training still fails with depth:



Unnormalized ResNets (at initialization)

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)

Divide by √2

Divide by √2 Why does this fail?

Residual and skip branches contribute equally to output

“Effective depth” of this ResNet = d/2

➔ Signal poorly conditioned

(d = total number of residual blocks)



Normalized ResNets (at initialization)

Residual branches always contribute O(1)

Variance of the output of the L-th residual block = O(L)

O(1)
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Normalized ResNets (at initialization)

BatchNorm downscales L-th residual branch by O(√L)

Residual branch contributes 1/(L+1) fraction of the variance

Output signal dominated by skip path for large L

“Effective depth” ≪ d
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O(1)



Normalized ResNets (at initialization)

BatchNorm downscales L-th residual branch by O(√L)

Residual branch contributes 1/(L+1) fraction of the variance

Output signal dominated by skip path for large L

“Effective depth” ≪ d

Optimal learning rate almost independent of depth

O(L)

O(1)

O(L)

O(L+1)

O(1)



Simplest way to recover this benefit?

BatchNorm downscales L-th residual branch by O(√L)

Depth of typical residual block: O(d) 

➔ BatchNorm downscales by O(√d) on average



Simplest way to recover this benefit?

BatchNorm downscales L-th residual branch by O(√L)

Depth of typical residual block: O(d) 

➔ BatchNorm downscales by O(√d) on average

SkipInit:

Include a learnable scalar multiplier on each residual 
branch initialized to α ≤ 1/√d



Simplest way to recover this benefit?

SkipInit can train very deep residual networks w/o BatchNorm

Optimal learning rate almost independent of depth



Benefits 2 and 3: 
Large batch training and implicit regularization

These two benefits are best identified by comparing 
BN-ResNets and SkipInit-ResNets at a range of batch sizes

We train a 16-4 Wide-ResNet on CIFAR-10 for 200 epochs

At each batch size, we tune the learning rate over a 
logarithmic grid, in order to identify:

1. Learning rate which minimizes training loss

2. Learning rate which maximizes test accuracy



Benefits 2 and 3:

210 = 1024

● SkipInit reaches smaller training losses than BatchNorm but...



● SkipInit reaches smaller training losses than BatchNorm but...

● Two additional benefits:
1. Implicit regularization*

Benefits 2 and 3:

(1)

*Believed to arise from the noise in the 
batch statistics. E.g. see Luo et al., 
Towards Understanding Regularization 
in Batch Normalization, ICLR 2019

Requires us to tune "ghost batch size"

https://arxiv.org/abs/1809.00846
https://arxiv.org/abs/1809.00846


● SkipInit reaches smaller training losses than BatchNorm but...

● Two additional benefits:
1. Implicit regularization*

2. Efficient large batch training

Benefits 2 and 3:

(1)
(2)

(2)

*Believed to arise from the noise in the 
batch statistics. E.g. see Luo et al., 
Towards Understanding Regularization 
in Batch Normalization, ICLR 2019

Requires us to tune "ghost batch size"

https://arxiv.org/abs/1809.00846
https://arxiv.org/abs/1809.00846


Why can BatchNorm scale to larger batch sizes?

(2)



Why can BatchNorm scale to larger batch sizes?

(2) (2)



● BatchNorm increases the maximum stable learning rate

○ suggests the loss landscape is better conditioned*

● Note: small batch training is noise dominated, not curvature dominated

*See Santurkar et al., How Does Batch Normalization Help Optimization?, NeurIPS 2018, Bjorck et al., Understanding Batch Normalization, 
NeurIPS 2018, and Smith et al., On the Generalization Benefit of Noise in Stochastic Gradient Descent, ICML 2020.

Why can BatchNorm scale to larger batch sizes?

(2) (2)

https://arxiv.org/abs/1805.11604
https://arxiv.org/abs/1806.02375
https://arxiv.org/pdf/2006.15081.pdf


Variance of signal on skip path at init grows linearly as predicted

Benefit 4: Eliminating mean-shift (in ReLU networks) 

Deep linear normalized ResNet



Variance of signal on skip path at init grows linearly as predicted

But in ReLU networks, the squared BatchNorm means also grow linearly

Why?

Benefit 4: Eliminating mean-shift (in ReLU networks) 

Deep linear normalized ResNet Deep ReLU normalized ResNet



Variance of signal on skip path at init grows linearly as predicted

But in ReLU networks, the squared BatchNorm means also grow linearly

Why? Because the outputs of ReLU activations have positive mean

Benefit 4: Eliminating mean-shift (in ReLU networks) 

Deep linear normalized ResNet Deep ReLU normalized ResNet



Why is there a mean-shift?

Inputs to conv have 
positive mean

Outputs also have non-zero 
mean almost surely



Why is there a mean-shift?

Inputs to conv have 
positive mean

Outputs also have non-zero 
mean almost surely

mean-shift 
compounds 
on skip path, 
but harmless

BatchNorm resets mean to 
zero, so it cannot compound 
on residual path

*ReLU-BN-Conv 
ordering trains 
equally stably 
while avoiding 
the mean-shift 
on the skip path



If the activation function g(x) is not 

antisymmetric, the output of the conv 

layer will have mean proportional to 𝜇W

Jacot et al., Order and Chaos: NTK views on DNN Normalization, 
Checkerboard and Boundary Artifacts, 2019

Why is there a mean-shift?

Inputs to conv have 
positive mean

BatchNorm resets mean to 
zero, so it cannot compound 
on residual path

Even when sampled from N(0, 1), 
any specific initialization of W will 

almost surely have non-zero 𝜇W 

(even in infinite width limit)

Outputs also have non-zero 
mean almost surely

mean-shift 
compounds 
on skip path, 
but harmless

https://arxiv.org/abs/1907.05715
https://arxiv.org/abs/1907.05715


1. BatchNorm biases ResNets towards the skip path, fixing bad init

2. BatchNorm enables efficient training with larger minibatches

3. BatchNorm can act as an implicit regularizer

4. BatchNorm eliminates mean-shift in ReLU networks

Four benefits of BatchNorm (in ResNets)

Can we build normalizer-free networks that recover each of these benefits?



The Normalizer-Free (NF-) Strategy 

● Compatible with most existing ResNets architectures 

● Fixes Initialization by downscaling residual branch and eliminating mean shift:
○ Downscale residual branch by predicting the expected variance at init
○ Eliminate mean-shift using “Scaled Weight Standardization”

1/𝛽0
WSConv 𝛼

+

1/𝛽1
WSConv 𝛼

+
Var0=1 Var1=1+𝛼2 Var2=1+2𝛼2

𝛽ℓ=   Varℓ



The Normalizer-Free (NF-) Strategy 

● Compatible with most existing ResNets architectures 

● Fixes Initialization by downscaling residual branch and eliminating mean shift:
○ Downscale residual branch by predicting the expected variance at init
○ Eliminate mean-shift using “Scaled Weight Standardization”

1/𝛽0
WSConv 𝛼

+

1/𝛽1
WSConv 𝛼

+
Var0=1 Var1=1+𝛼2 Var2=1+2𝛼2

𝛽ℓ=   Varℓ

● We also get competitive results on ResNets using SkipInit + Scaled WS,
but the NF-strategy above is more stable at large learning rates



Weight Standardization (WS) prevents mean-shift by reparameterizing the model to ensure                                       
the mean of each row of the weight matrix is exactly zero

● We use a slight modification (“Scaled Weight Standardization”)  which includes a 
nonlinearity-specific gain (𝛾) and applies fan-in scaling (1/sqrt(N)) to preserve signal variance

Huang et al., Centered Weight Normalization in Accelerating Training of Deep Neural Networks, ICCV 2017
Qiao et al., Micro-Batch Training with Batch-Channel Normalization and Weight Standardization

Scaled Weight Standardization

https://openaccess.thecvf.com/content_ICCV_2017/papers/Huang_Centered_Weight_Normalization_ICCV_2017_paper.pdf
https://arxiv.org/abs/1903.10520


Weight Standardization (WS) prevents mean-shift by reparameterizing the model to ensure                                       
the mean of each row of the weight matrix is exactly zero

● We use a slight modification (“Scaled Weight Standardization”)  which includes a 
nonlinearity-specific gain (𝛾) and applies fan-in scaling (1/sqrt(N)) to preserve signal variance

Huang et al., Centered Weight Normalization in Accelerating Training of Deep Neural Networks, ICCV 2017
Qiao et al., Micro-Batch Training with Batch-Channel Normalization and Weight Standardization

Scaled Weight Standardization
*Note: none of the limitations 
of activation normalizers but 

performs poorly with 
depthwise convolutions

https://openaccess.thecvf.com/content_ICCV_2017/papers/Huang_Centered_Weight_Normalization_ICCV_2017_paper.pdf
https://arxiv.org/abs/1903.10520


Signal propagation in NF-ResNets

Combined with Scaled Weight Standardization, the hidden activation statistics 
of NF-ResNets almost exactly match the statistics of BN-ResNets at init

ResNet-600 with 4 transition blocks marked by black dots



Signal propagation in NF-ResNets

Combined with Scaled Weight Standardization, the hidden activation statistics 
of NF-ResNets almost exactly match the statistics of BN-ResNets at init

ResNet-600 with 4 transition blocks marked by black dots

Note, it is often sufficient to consider the forward pass in ResNets 
at initialization because the network is effectively shallow



● Without regularization, NF-ResNets achieve smaller training losses than BN-ResNets, but 
worse generalization (they do not share BatchNorm's implicit regularization effect)

● With Dropout and Stochastic Depth, NF-ResNets match BN-ResNets on ImageNet

NF-ResNets at batch size 1024

Top-1 Accuracy on ImageNet, 
no extra data



● Without regularization, NF-ResNets achieve smaller training losses than BN-ResNets, but 
worse generalization (they do not share BatchNorm's implicit regularization effect)

● With Dropout and Stochastic Depth, NF-ResNets match BN-ResNets on ImageNet

● NF-ResNets achieve substantially higher performance after pre-training

NF-ResNets at batch size 1024

Top-1 Accuracy on ImageNet, 
no extra data

Top-1 Accuracy 
on ImageNet, 

after pre-training 
on JFT



1. BatchNorm biases ResNets towards the skip path, fixing bad init                            
(recover with the NF-Strategy)

2. BatchNorm enables efficient training with larger minibatches            

3. BatchNorm can act as an implicit regularizer                                                                                                      
(Can be detrimental when pretraining on massive datasets. Recover with explicit regularization if required)

4. BatchNorm eliminates mean-shift in ReLU networks                                                                                        
(recover with scaled weight standardization)

Four benefits of BatchNorm (in ResNets)



Alternative methods for large batch training

Many methods enable faster convergence on ill-conditioned losses:

● Momentum

● Adaptive gradient methods like Adam

● Second order methods like KFAC

● Normalized optimizers like LARS or Fromage

● Gradient clipping

We expect these methods to perform no better than SGD if the batch size is small,                                             
but to outperform SGD when the batch size is large

Zhang et al., Which Algorithmic Choices Matter at Which Batch Sizes? Insights From a Noisy Quadratic Model, NeurIPS 2019.

Smith et al., On the Generalization Benefit of Noise in Stochastic Gradient Descent, ICML 2020.

(Noise dominated, 
small learning rate)

(Curvature dominated, 
large learning rate)

https://arxiv.org/abs/1907.04164
https://arxiv.org/abs/2006.15081


“Adaptive Gradient Clipping”

Intuition: Parameter updates should be small relative to the magnitude of the weight

Consider the gradient descent update for layer ℓ :

A single gradient descent step will change the original weights  by:

Use above ratio to clip gradients (in practice we use unit-wise ratios):

Gi
ℓ : i denotes the fan-in extent (channels and spatial dimensions)

Frobenius norm of W capped below at 1e-3



Adaptive Gradient Clipping: Ablations

● AGC can train Normalizer-Free ResNets stably at high batch sizes with large learning rates, 
and with very strong augmentations

● Optimal clipping values depend on batch size
○ This is expected: training instability is related to large batch sizes/learning rates



● We now have all the pieces required to remove BatchNorm from our networks

● However the existing SOTA architecture (EfficientNets) is co-adapted to a specific form 
of BatchNorm, and contains Depthwise-Convs, which don’t work well with Scaled WS

● We therefore set out to design a new SOTA model family

● Unlike EfficientNets, which were designed to minimize theoretical FLOPS, we chose to 
design networks to minimize actual training latency on target accelerators

Scaling Normalizer-Free Networks to SOTA



Start with simple baseline (SE-ResNeXt-D) and hand-tune using simple best 
practices and considering the specific properties of existing accelerators

● Different depth scaling pattern, and gently scaled input resolution

● Second added 3x3 conv, group widths of 128

● Different width pattern, no width scaling

The NFNet Architecture



NFNets benefit from very strong data augmentations

● Very expressive (without the implicit regularization of BatchNorm)

The NFNet Architecture



Directly optimizing for speed on accelerators yields big speedups, and a new 
state-of-the-art on ImageNet (8.7x faster than EfficientNet-B7 to same accuracy).

ImageNet Results

*With Sharpness Aware 
Minimization (SAM), this 
increases to 86.5% top-1.



ImageNet Results



Transferring from JFT

● In this setting, NFNets obtain second-best performance while using ~12x less 
compute than the current state of the art



● We remove BatchNorm by studying and replicating its effects on signal propagation
● Downscales residual branch
● Enables large batch training
● Implicit regularization
● Prevents mean-shift

● The resulting Normalizer-Free ResNets attain similar performance to BN-ResNets on 
ImageNet, and substantially outperform BN-ResNets after large-scale pre-training

● We introduce the NFNet model family, which set a new ImageNet SOTA of 86.5%, 
while being significantly faster to train than existing networks

Conclusions

● NF-strategy
● Adaptive gradient clipping
● Explicit regularization
● Scaled Weight Standardization



● If you’re currently using ResNets for a vision backbone, our NFNet models 
are a drop-in replacement and are substantially more expressive

● Code and pre-trained JAX/Haiku models available at http://dpmd.ai/nfnets

Try our models!

http://dpmd.ai/nfnets


Code: http://dpmd.ai/nfnets

The end and 
thank you

If you have any questions please 
reach out sohamde@google.com

http://dpmd.ai/nfnets


Led to a dramatic improvement in performance

● Train significantly deeper networks (1000+ layers)

● Faster convergence

● Better generalization

Origins of these benefits are not well understood

Plots from: Li et al., Visualizing the Loss Landscape of Neural Nets, NeurIPS 2018

Batch normalization + Residual networks

https://arxiv.org/abs/1712.09913


Led to a dramatic improvement in performance

● Train significantly deeper networks (1000+ layers)

● Faster convergence

● Better generalization

Origins of these benefits are not well understood

Plots from: Sankararaman et al., The Impact of Neural Network Overparameterization on 
Gradient Confusion and Stochastic Gradient Descent, ICML 2020

Batch normalization + Residual networks

https://arxiv.org/abs/1904.06963
https://arxiv.org/abs/1904.06963


Intuition from deep linear networks

Linear ResNet = ensemble of paths

BatchNorm biases linear ResNets towards shallow paths at initialization

500 ~10



Implications?

All trainable deep networks use one of the following:

● BatchNorm + ResNet
● Orthogonal Initialization + antisymmetric activations (e.g. Tanh)
● SkipInit (or alternatives like Fixup) + ResNet

Common property: Initialize layers/residual blocks close to the identity function



Implications?

All trainable deep networks use one of the following:

● BatchNorm + ResNet
● Orthogonal Initialization + antisymmetric activations (e.g. Tanh)
● SkipInit (or alternatives like Fixup) + ResNet

Common property: Initialize layers/residual blocks close to the identity function

Idea extends to other normalization schemes:

● E.g. LayerNorm in Transformers should be 
placed on residual path for easier training



This mean shift accumulates with depth!

With 
BatchNorm

Without 
BatchNorm

&
with Variance 
Downscaling

ResNet-600 with 4 transition blocks marked by black dots



Related Work

● GroupNorm + Weight Standardization
○ Noted by Brain Zurich as being a good drop-in replacement for BN

○ We find it improves self-supervised performance on SimCLR



Signal Propagation Plots

● Directly measuring statistics of hidden activations helps characterize how signals evolve
○ Allows comparison of different architectures 

SPP for a 600 layer ResNet v2 with ReLU-BN-Conv ordering

   



The Mean Shift Issue



The Mean Shift Issue

(He init, any network width)



The Mean Shift Issue



Gradient Clipping

● Often used in language modeling to stabilize training

● Allows training with larger learning rates

Typically performed by constraining the norm of the gradient:

But performance is very sensitive to clipping threshold λ                                                          
(requires retuning when varying model depth, batch size and learning rate)

Pascanu et al., On the difficulty of training recurrent neural networks, ICML 2013.

http://proceedings.mlr.press/v28/pascanu13.pdf

